A partial truncation procedure in the partial domain method for computing the eigenvalues of the two-dimensional Laplace operator
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 11, pp. 1638-1654 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_11_a3,
     author = {L. T. Poznyak},
     title = {A partial truncation procedure in the partial domain method for computing the eigenvalues of the two-dimensional {Laplace} operator},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1638--1654},
     year = {1991},
     volume = {31},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a3/}
}
TY  - JOUR
AU  - L. T. Poznyak
TI  - A partial truncation procedure in the partial domain method for computing the eigenvalues of the two-dimensional Laplace operator
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1638
EP  - 1654
VL  - 31
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a3/
LA  - ru
ID  - ZVMMF_1991_31_11_a3
ER  - 
%0 Journal Article
%A L. T. Poznyak
%T A partial truncation procedure in the partial domain method for computing the eigenvalues of the two-dimensional Laplace operator
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1638-1654
%V 31
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a3/
%G ru
%F ZVMMF_1991_31_11_a3
L. T. Poznyak. A partial truncation procedure in the partial domain method for computing the eigenvalues of the two-dimensional Laplace operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 11, pp. 1638-1654. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a3/

[1] Degtyareva V. P., Issledovanie i razrabotka razlichnykh modifikatsii metoda chastichnykh oblastei dlya slozhnykh kraevykh zadach radiofiziki (volnovody, rezonatory, planarnye linii peredachi), Avtoref. dis. ...kand. fiz.-matem. nauk, Un-t druzhby narodov, M., 1976

[2] Poznyak L. T., “O svyazi metoda chastichnykh oblastei s metodom Vainshteina”, Vychisl. i prikl. matem., Izd-vo BGU, Ufa, 1988, 84–96 | MR

[3] Poznyak L. T., “Otsenka skorosti skhodimosti metoda Vainshteina v zadache o sobstvennykh znacheniyakh $\mathrm{L}$-obraznoi membrany”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1297–1310 | MR

[4] Poznyak L. T., “O strogom obosnovanii i otsenke skorosti skhodimosti metoda chastichnykh oblastei v dvumernykh zadachakh o sobstvennykh znacheniyakh operatora Laplasa”, Zh. vychisl. matem. i matem. fiz., 30:7 (1990), 1057–1070 | MR

[5] Guld S. Kh., Variatsionnye metody v zadachakh o sobstvennykh znacheniyakh, Mir, M., 1970 | MR

[6] Fichera G., Linear elliptic differential systems and eigenvalue problems, Springer, Berlin, 1965 | MR | Zbl

[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR

[10] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR