Difference methods for first-order partial differential-functional equations with initial-boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 10, pp. 1476-1488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_10_a4,
     author = {Z. Kamont and {\CYRK}. Prz\k{a}dka},
     title = {Difference methods for first-order partial differential-functional equations with initial-boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1476--1488},
     year = {1991},
     volume = {31},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_10_a4/}
}
TY  - JOUR
AU  - Z. Kamont
AU  - К. Prządka
TI  - Difference methods for first-order partial differential-functional equations with initial-boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1476
EP  - 1488
VL  - 31
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_10_a4/
LA  - en
ID  - ZVMMF_1991_31_10_a4
ER  - 
%0 Journal Article
%A Z. Kamont
%A К. Prządka
%T Difference methods for first-order partial differential-functional equations with initial-boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1476-1488
%V 31
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_10_a4/
%G en
%F ZVMMF_1991_31_10_a4
Z. Kamont; К. Prządka. Difference methods for first-order partial differential-functional equations with initial-boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 10, pp. 1476-1488. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_10_a4/

[1] Lakshmikantham V., Leela S., Differential and integral inequalities, Acad.. Press, N. Y.–L., 1969 | Zbl

[2] Brandi P., Kamont Z., Salvadori A., “Differential and difference inequalities related to mixed problems for first order partial differenatial-functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 38 (1990), 1–22 | MR

[3] Kamont Z., Prza̧dka K., “Difference methods for non-linear partial differential equations of the first order”, Ann. Polon. Math., 48 (1988), 227–246 | MR | Zbl

[4] Kowalski Z., “A difference method for the non-linear partial differential equation of the first order”, Ann. Polon. Math., 18 (1966), 235–242 | MR | Zbl

[5] Kowalski Z., “A difference method for certain hyperbolic systems of non-linear partial differential equations of the first order”, Ann. Polon. Math., 19 (1967), 313–322 | MR | Zbl

[6] Kamont Z., “A difference method for the non-linear partial differential equation of the first order with a retarded argument”, Math. Nachr., 107 (1981), 87–93 | DOI | MR

[7] Łojasiewicz S., “Sur le probleme de Cauchy pour les systémes d'équations aux dérivées partielles du premier ordre dans le cas hyperbolique de deux variables indépendantes”, Ann. Polon. Math., 3 (1957), 87–117 | MR

[8] Walter W., Differential and integral inequalities, Springer, Berlin etc., 1970 | MR

[9] Brandi P., Ceppitelli R., “Approximate solutions (in a classic sense) for the Cauchy problem for semilinear hyperbolic systems”, Atii Sem. Fat. Fis. Univ. Modena, 33 (1984), 77–112 | MR | Zbl

[10] Brandi P., Ceppitelli R., “$\varepsilon$-approximate solutions for hereditary non linear partial differential equations”, Suppl. Rend. Circ. Mat. Palermo, 8 (1985), 399–417 | MR | Zbl

[11] Chang Ho-ling, “Error estimations for certain approximate solutions of a non-linear partial differential equations of the first order”, Ann. Polon. Math., 18 (1966), 293–298 | MR | Zbl

[12] Prza̧dka K., “Convergence of one-step difference methods for first order partial differential-functional equations”, Atii Sem. Mat. Fis. Univ. Modena, 35 (1987), 263–288 | MR | Zbl

[13] Prza̧dka K., “Difference methods for non-linear partial differential-functional equations of the first order”, Math. Nachr., 138 (1988), 105–123 | DOI | MR | Zbl

[14] Reinhardt H. I., Analysis of approximation methods for differential and integral equations, Springer, N. Y. etc., 1985 | MR | Zbl

[15] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nedra, M., 1988 | MR

[16] Mitchel A. R., Griffiths D. F., The finite difference methods in partial differential equations, J. Wiley and Sons, Chichester etc., 1980 | MR

[17] Brandi P., Ceppitelli R., “Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equations of the first order”, Ann. Polon. Math., 47 (1986), 121–136 | MR | Zbl

[18] Kamont Z., “Existence of solutions of first order partial differential-functional equations”, Comment. Math., 25 (1985), 249–263 | MR | Zbl

[19] Salvadori A., “Sul problema di Cauchy per una struttura ereditaria di tipo iperbolico. Esistenza, unicita e dipendenza continua”, Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 329–356 | MR | Zbl