An iterative method for solving a problem of diffraction by a spherical segment
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1193-1200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An iterative method is proposed for solving the problem of diffraction by a spherical segment (scalar case). The method ultimately yields effective mathematical models for investigations in the quasi-optical domain. Underlying it is a rigorous method for solving the scattering problem. The efficiency of the method is estimated and it is compared with approximate methods.
@article{ZVMMF_1990_30_8_a6,
     author = {V. G. Dudka and Yu. A. Tuchkin and V. P. Shestopalov},
     title = {An iterative method for solving a~problem of diffraction by a~spherical segment},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1193--1200},
     year = {1990},
     volume = {30},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a6/}
}
TY  - JOUR
AU  - V. G. Dudka
AU  - Yu. A. Tuchkin
AU  - V. P. Shestopalov
TI  - An iterative method for solving a problem of diffraction by a spherical segment
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1193
EP  - 1200
VL  - 30
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a6/
LA  - ru
ID  - ZVMMF_1990_30_8_a6
ER  - 
%0 Journal Article
%A V. G. Dudka
%A Yu. A. Tuchkin
%A V. P. Shestopalov
%T An iterative method for solving a problem of diffraction by a spherical segment
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1193-1200
%V 30
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a6/
%G ru
%F ZVMMF_1990_30_8_a6
V. G. Dudka; Yu. A. Tuchkin; V. P. Shestopalov. An iterative method for solving a problem of diffraction by a spherical segment. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1193-1200. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a6/

[1] Tuchkin Yu. A., Shestopalov V. P., “Ob odnom modelnom klasse kraevykh zadach elektrodinamiki”, Differents. ur-niya, 18:4 (1982), 663–673 | MR | Zbl

[2] Vinogradov S. S., Tuchkin Yu. A., Shestopalov V. P., “K teorii rasseyaniya voln na nezamknutykh ekranakh sfericheskoi formy”, Dokl. AN SSSR, 256:6 (1981), 1346–1350 | MR

[3] Shestopalov V. P., Metod zadachi Rimana-Gilberta v teorii difraktsii i rasprostraneniya elektromagnitnykh voln, Izd-vo KhGU, Kharkov, 1971

[4] Kheigeman L., Yang D., Prikladnye iteratsionnye metody, v. II, Mir, M., 1986 | MR

[5] Bakhvalov N. S., Chislennye metody, v. 1, Nauka, M., 1975

[6] Uilkinson, Rainsh, Spravochnik algoritmov na yazyke ALGOL. Lineinaya algebra, Mashinostroenie, M., 1976, 63–68

[7] Esterbyu O., Zlatev Z., Pryamye metody dlya razrezhennykh matrits, Mir, M., 1987 | MR

[8] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[9] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985