The maximum principle residual functional in optimal control theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1133-1149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibilities of applying results related to the so-called maximum principle residual functional to justify and design algorithms for solving optimal control problems and discussed. The differential properties of the value function of the optimal control problem are established. A dual method for solving the optimal control problem, based on maximizing the value function of a modified Lagrange functional, is described.
@article{ZVMMF_1990_30_8_a1,
     author = {M. I. Sumin},
     title = {The maximum principle residual functional in optimal control theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1133--1149},
     year = {1990},
     volume = {30},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a1/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - The maximum principle residual functional in optimal control theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1133
EP  - 1149
VL  - 30
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a1/
LA  - ru
ID  - ZVMMF_1990_30_8_a1
ER  - 
%0 Journal Article
%A M. I. Sumin
%T The maximum principle residual functional in optimal control theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1133-1149
%V 30
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a1/
%G ru
%F ZVMMF_1990_30_8_a1
M. I. Sumin. The maximum principle residual functional in optimal control theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1133-1149. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a1/

[1] Sumin M. I., “Optimalnoe upravlenie sistemami s priblizhenno izvestnymi iskhodnymi dannymi”, Zh. vychisl. matem. i matem. fiz., 27:2 (1987), 163–177 | MR | Zbl

[2] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[3] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[5] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[6] Novozhenov M. M., Sumin M. I., “Ob odnom podkhode k chislennomu resheniyu zadach optimalnogo upravleniya, osnovannom na printsipe maksimuma”, Issl. po teorii funktsii, 76–93; Деп. в ВИНИТИ, No 8122-В87, 1987

[7] Sumin M. I., “O funktsionale nevyazki printsipa maksimuma v teorii optimalnogo upravleniya”, Issl. po differents. i integr. ur-niyam, 121–157

[8] Krylov I. A., Chernousko F. L., “Algoritm metoda posledovatelnykh priblizhenii dlya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 12:1 (1972), 14–34 | Zbl

[9] Lyubushin A. A., “Modifikatsiya i issledovanie skhodimosti metoda posledovatelnykh priblizhenii dlya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 19:6 (1979), 1414–1421 | MR | Zbl

[10] Vasilev O. V., Tyatyushkin A. I., “Ob odnom metode resheniya zadach optimalnogo upravleniya, osnovannom na printsipe maksimuma”, Zh. vychisl. matem. i matem. fiz., 21:6 (1981), 1376–1384 | MR

[11] Srochko V. A., Khamidulin R. G., “Metod posledovatelnykh priblizhenii v zadachakh optimalnogo upravleniya s kraevymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 26:4 (1986), 508–520 | MR | Zbl

[12] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[13] Clarke F. H., Loewen P. D., “The value function in optimal control: sensitivity, controllability and time-optimality”, SIAM J. Control and Optimiz., 24:2 (1986), 243–263 | DOI | MR | Zbl

[14] Rokafellar R., Vypuklyi analiz, Mir, M., 1973