Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1123-1132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Order optimal cubature formulae are constructed for evaluating integrals of functions in class $Q_{r,\gamma}(\Omega,1)$, where $\Omega=[-1,1]^l$, $l\ge2$. Asymptotically optimal quadrature formulae are constructed for evaluating integrals of functions in $Q_{r,\gamma}(\Omega,1)$ where $\Omega=[-1,1]$.
@article{ZVMMF_1990_30_8_a0,
     author = {I. V. Boykov},
     title = {Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1123--1132},
     year = {1990},
     volume = {30},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/}
}
TY  - JOUR
AU  - I. V. Boykov
TI  - Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1123
EP  - 1132
VL  - 30
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/
LA  - ru
ID  - ZVMMF_1990_30_8_a0
ER  - 
%0 Journal Article
%A I. V. Boykov
%T Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1123-1132
%V 30
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/
%G ru
%F ZVMMF_1990_30_8_a0
I. V. Boykov. Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1123-1132. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/

[1] Kolmogoroff A., “Zur Grossenordnung des Restgleides Fourierscher Reihen differenzierbarer Funktionen”, Ann. Math., 36 (1935), 521–526 | DOI | MR

[2] Nikolskii S. M., “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, Uspekhi matem. nauk, 5:2 (1950), 165–177 | MR

[3] Bakhvalov N. S., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 10:3 (1970), 555–568 | MR | Zbl

[4] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[5] Korneichuk N. P., “Nailuchshie kubaturnye formuly dlya nekotorykh klassov funktsii mnogikh peremennykh”, Matem. zametki, 3:5 (1968), 565–576

[6] Bakhvalov N. S., “Ob optimalnykh otsenkakh skhodimosti kvadraturnykh protsessov i metodov integrirovaniya tipa Monte-Karlo na klassakh funktsii”, Chisl. metody resheniya differents. i integr. ur-nii i kvadraturnye formuly, Nauka, M., 1964, 5–63

[7] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[8] Polovinkin V. I., “Nekotorye voprosy teorii vesovykh kubaturnykh formul”, Sibirskii matem. zh., 12:1 (1971), 177–196 | MR | Zbl

[9] Babenko V. F., “Tochnaya asimptotika ostatkov optimalnykh dlya nekotorykh klassov funktsii vesovykh kubaturnykh formul”, Matem. zametki, 20:4 (1976), 589–595 | MR | Zbl

[10] Babenko K. I., “O nekotorykh zadachakh teorii priblizhenii i chislennogo analiza”, Uspekhi matem. nauk, 40:1 (1985), 3–28 | MR

[11] Vainikko G., Pedas A., Uba P., Metody resheniya slabosingulyarnykh integralnykh uravnenii, Izd-vo Tartusskogo un-ta, Tartu, 1984 | MR

[12] Nikolskii S. M., Kurs matematicheskogo analiza, v. 1, Nauka, M., 1975

[13] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR