Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1123-1132
Voir la notice de l'article provenant de la source Math-Net.Ru
Order optimal cubature formulae are constructed for evaluating integrals of functions in class $Q_{r,\gamma}(\Omega,1)$, where $\Omega=[-1,1]^l$, $l\ge2$. Asymptotically optimal quadrature formulae are constructed for evaluating integrals of functions in $Q_{r,\gamma}(\Omega,1)$ where $\Omega=[-1,1]$.
@article{ZVMMF_1990_30_8_a0,
author = {I. V. Boykov},
title = {Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1123--1132},
publisher = {mathdoc},
volume = {30},
number = {8},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/}
}
TY - JOUR
AU - I. V. Boykov
TI - Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 1990
SP - 1123
EP - 1132
VL - 30
IS - 8
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/
LA - ru
ID - ZVMMF_1990_30_8_a0
ER -
%0 Journal Article
%A I. V. Boykov
%T Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1123-1132
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/
%G ru
%F ZVMMF_1990_30_8_a0
I. V. Boykov. Optimal cubature formulae for computing many-dimensional integrals of functions in the class $Q_{r,\gamma}(\Omega,1)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 8, pp. 1123-1132. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_8_a0/