A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1057-1070 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The partial domain method for problems of the type indicated in the title of this paper is treated as a version either of Weinstein's method of intermediate problems or of the Ritz method. This yields a rigorous justification of the method and enables one to estimate its rate of convergence. The justification technique is demonstrated in detail for the problem of the normal modes of an $\mathrm L$-shaped membrane clamped at its edges.
@article{ZVMMF_1990_30_7_a7,
     author = {L. T. Poznyak},
     title = {A~rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the {Laplace} operator},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1057--1070},
     year = {1990},
     volume = {30},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/}
}
TY  - JOUR
AU  - L. T. Poznyak
TI  - A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1057
EP  - 1070
VL  - 30
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/
LA  - ru
ID  - ZVMMF_1990_30_7_a7
ER  - 
%0 Journal Article
%A L. T. Poznyak
%T A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1057-1070
%V 30
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/
%G ru
%F ZVMMF_1990_30_7_a7
L. T. Poznyak. A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1057-1070. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/

[1] Sedykh V. M. (red.), Volnovody s poperechnym secheniem slozhnoi formy, Izd-vo KhGU, Kharkov, 1979

[2] Grigorev A. D., Yankevich V. B., Rezonatory i rezonatornye zamedlyayuschie sistemy SVCh, Radio i svyaz, M., 1984

[3] Zargano G. F., Lyapin V. N., Mikhalevskii V. S. i dr., Volnovody slozhnykh sechenii, Radio i svyaz, M., 1986

[4] Degtyareva V. P., Issledovanie i razrabotka razlichnykh modifikatsii metoda chastichnykh oblastei dlya slozhnykh kraevykh zadach radiofiziki (volnovody, rezonatory, planarnye linii peredachi), Avtoref. dis. ...kand. fiz.-matem. nauk, Un-t druzhby narodov, M., 1976

[5] Poznyak L. T., “Primenenie metoda promezhutochnykh problem k zadache o sobstvennykh znacheniyakh $\mathrm{L}$-obraznoi membrany”, Metody matem. analiza upravlyaemykh protsessov, Izd-vo LGU, L., 1986, 38–49

[6] Poznyak L. T., “Otsenka skorosti skhodimosti metoda Vainshteina v zadache o sobstvennykh znacheniyakh $\mathrm{L}$-obraznoi membrany”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1297–1310 | MR

[7] Poznyak L. T., “O svyazi metoda chastichnykh oblastei s metodom Vainshteina”, Vychisl. i prikl. matem., Izd-vo Bashkirsk. un-ta, Ufa, 1988, 84–96 | MR

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[9] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, Otdel vychisl. matem. AN SSSR, M., 1983 | MR

[10] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[11] Krein S. G. (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl