@article{ZVMMF_1990_30_7_a7,
author = {L. T. Poznyak},
title = {A~rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the {Laplace} operator},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1057--1070},
year = {1990},
volume = {30},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/}
}
TY - JOUR AU - L. T. Poznyak TI - A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 1057 EP - 1070 VL - 30 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/ LA - ru ID - ZVMMF_1990_30_7_a7 ER -
%0 Journal Article %A L. T. Poznyak %T A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1990 %P 1057-1070 %V 30 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/ %G ru %F ZVMMF_1990_30_7_a7
L. T. Poznyak. A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1057-1070. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a7/
[1] Sedykh V. M. (red.), Volnovody s poperechnym secheniem slozhnoi formy, Izd-vo KhGU, Kharkov, 1979
[2] Grigorev A. D., Yankevich V. B., Rezonatory i rezonatornye zamedlyayuschie sistemy SVCh, Radio i svyaz, M., 1984
[3] Zargano G. F., Lyapin V. N., Mikhalevskii V. S. i dr., Volnovody slozhnykh sechenii, Radio i svyaz, M., 1986
[4] Degtyareva V. P., Issledovanie i razrabotka razlichnykh modifikatsii metoda chastichnykh oblastei dlya slozhnykh kraevykh zadach radiofiziki (volnovody, rezonatory, planarnye linii peredachi), Avtoref. dis. ...kand. fiz.-matem. nauk, Un-t druzhby narodov, M., 1976
[5] Poznyak L. T., “Primenenie metoda promezhutochnykh problem k zadache o sobstvennykh znacheniyakh $\mathrm{L}$-obraznoi membrany”, Metody matem. analiza upravlyaemykh protsessov, Izd-vo LGU, L., 1986, 38–49
[6] Poznyak L. T., “Otsenka skorosti skhodimosti metoda Vainshteina v zadache o sobstvennykh znacheniyakh $\mathrm{L}$-obraznoi membrany”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1297–1310 | MR
[7] Poznyak L. T., “O svyazi metoda chastichnykh oblastei s metodom Vainshteina”, Vychisl. i prikl. matem., Izd-vo Bashkirsk. un-ta, Ufa, 1988, 84–96 | MR
[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[9] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, Otdel vychisl. matem. AN SSSR, M., 1983 | MR
[10] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[11] Krein S. G. (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl