A relationship between order and degree for a stable formula with advanced nodes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1045-1056 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A major problem in the implementation of $k$-step methods is to determine their accuracy. This problem is solved using relationships between order and degree for a $k$-step method. A relationship between order and degree is found for stable multistep methods with a second derivative.
@article{ZVMMF_1990_30_7_a6,
     author = {V. R. Ibragimov},
     title = {A~relationship between order and degree for a~stable formula with advanced nodes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1045--1056},
     year = {1990},
     volume = {30},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a6/}
}
TY  - JOUR
AU  - V. R. Ibragimov
TI  - A relationship between order and degree for a stable formula with advanced nodes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1045
EP  - 1056
VL  - 30
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a6/
LA  - ru
ID  - ZVMMF_1990_30_7_a6
ER  - 
%0 Journal Article
%A V. R. Ibragimov
%T A relationship between order and degree for a stable formula with advanced nodes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1045-1056
%V 30
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a6/
%G ru
%F ZVMMF_1990_30_7_a6
V. R. Ibragimov. A relationship between order and degree for a stable formula with advanced nodes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1045-1056. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a6/

[1] Bakhvalov N. S., “Nekotorye zamechaniya k voprosu o chislennom integrirovanii differentsialnykh uravnenii metodom konechnykh raznostei”, Dokl. AN SSSR, 104:6 (1955), 805–808 | Zbl

[2] Dahlquist G., “Convergence and stability in the numerical integration of ordinary differential equations”, Math. Scand., 4:1 (1956), 33–53 | MR | Zbl

[3] Ibragimov V. P., “Odin nelineinyi metod chislennogo resheniya zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii”, Differents. ur-niya i primeneniya, Tr. II Vses. konf. (Russe, Bolgariya, 1981), Russe, Bolgariya, 1982, 310–319 | Zbl

[4] Bakhvalov N. S., Chislennye metody, Nauka, M., 1978 | MR | Zbl

[5] Ibragimov V. R., “Svyaz mezhdu poryadkom i stepenyu ustoichivoi raznostnoi formuly s zabeganiem vpered”, Priblizhennye metody operatornykh ur-nii, Azgosuniversitet, Baku, 1984, 55–63 | MR

[6] Ibragimov V. R., “Skhodimost metoda prognoza-korrektsii”, Godishnik na visshite uchebni zavedeniya: Prilozhna matem., 20:4 (1984), 187–197 | MR