The projection method for singularly perturbed boundary value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1031-1044 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite element method for linear and non-linear singularly perturbed boundary-value problems is considered. It is proved that the approximate solutions converge to the exact solution in the norm of the space of continuous functions, uniformly in the small parameter. The proposed scheme is suitable for solving a wider class of problems than can be handled by the popular “hinged element method”, and also produces a higher order of approximation.
@article{ZVMMF_1990_30_7_a5,
     author = {I. A. Blatov},
     title = {The projection method for singularly perturbed boundary value problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1031--1044},
     year = {1990},
     volume = {30},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/}
}
TY  - JOUR
AU  - I. A. Blatov
TI  - The projection method for singularly perturbed boundary value problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1031
EP  - 1044
VL  - 30
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/
LA  - ru
ID  - ZVMMF_1990_30_7_a5
ER  - 
%0 Journal Article
%A I. A. Blatov
%T The projection method for singularly perturbed boundary value problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1031-1044
%V 30
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/
%G ru
%F ZVMMF_1990_30_7_a5
I. A. Blatov. The projection method for singularly perturbed boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1031-1044. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/

[1] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988

[2] Scymczak W., Babuska I., “Adaptivity and error estimation for the finite element method applied to convection-diffusion problems”, SIAM. J. Numer. Analys., 21:5 (1984), 910–954 | DOI | MR

[3] Miller Dzh., Riordan E., “Metod konechnykh elementov dlya dvukhtochechnykh kraevykh zadach s singulyarnymi vozmuscheniyami”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 2, ITPM AN SSSR, Novosibirsk, 1983, 142–154 | MR

[4] Stynes M., O'Riordan E., “A finite element method for a singularly perturbed boundary value problem”, Numer. Math., 50 (1986), 1–15 | DOI | MR | Zbl

[5] O'Riordan E., Stynes M., “$L^1$ and $L^\infty$ uniform convergence of a difference cheme for a semilinear singular perturbation problem”, Numer. Math., 80:5 (1987), 519–531 | MR

[6] Bakhvalov H. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[7] Blatov I. A., Strygin V. V., Skhodimost metoda kollokatsii dlya singulyarno vozmuschennykh kraevykh zadach, Dep. v VINITI 26.06.87, No 4710-V87

[8] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl

[9] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[10] Blatov I. A., Strygin V. V., “Skhodimost metoda Galerkina dlya nelineinoi dvukhtochechnoi singulyarno-vozmuschennoi kraevoi zadachi v prostranstve $C[a, b]$”, Zh. vychisl. matem. i matem. fiz., 25:7 (1985), 1001–1008 | MR | Zbl

[11] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[12] Krylov V. I., Bobkov V. V., Monastyrnyi P. I., Vychislitelnye metody, v. I, Nauka, M., 1976 | MR

[13] Natterer F., “Uniform convergence of Galerkin method for splines on highly nonuniform meshes”, Math. Comput., 31 (1977), 457–468 | MR | Zbl

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR