@article{ZVMMF_1990_30_7_a5,
author = {I. A. Blatov},
title = {The projection method for singularly perturbed boundary value problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1031--1044},
year = {1990},
volume = {30},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/}
}
TY - JOUR AU - I. A. Blatov TI - The projection method for singularly perturbed boundary value problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 1031 EP - 1044 VL - 30 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/ LA - ru ID - ZVMMF_1990_30_7_a5 ER -
I. A. Blatov. The projection method for singularly perturbed boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1031-1044. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a5/
[1] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988
[2] Scymczak W., Babuska I., “Adaptivity and error estimation for the finite element method applied to convection-diffusion problems”, SIAM. J. Numer. Analys., 21:5 (1984), 910–954 | DOI | MR
[3] Miller Dzh., Riordan E., “Metod konechnykh elementov dlya dvukhtochechnykh kraevykh zadach s singulyarnymi vozmuscheniyami”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 2, ITPM AN SSSR, Novosibirsk, 1983, 142–154 | MR
[4] Stynes M., O'Riordan E., “A finite element method for a singularly perturbed boundary value problem”, Numer. Math., 50 (1986), 1–15 | DOI | MR | Zbl
[5] O'Riordan E., Stynes M., “$L^1$ and $L^\infty$ uniform convergence of a difference cheme for a semilinear singular perturbation problem”, Numer. Math., 80:5 (1987), 519–531 | MR
[6] Bakhvalov H. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[7] Blatov I. A., Strygin V. V., Skhodimost metoda kollokatsii dlya singulyarno vozmuschennykh kraevykh zadach, Dep. v VINITI 26.06.87, No 4710-V87
[8] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl
[9] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[10] Blatov I. A., Strygin V. V., “Skhodimost metoda Galerkina dlya nelineinoi dvukhtochechnoi singulyarno-vozmuschennoi kraevoi zadachi v prostranstve $C[a, b]$”, Zh. vychisl. matem. i matem. fiz., 25:7 (1985), 1001–1008 | MR | Zbl
[11] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR
[12] Krylov V. I., Bobkov V. V., Monastyrnyi P. I., Vychislitelnye metody, v. I, Nauka, M., 1976 | MR
[13] Natterer F., “Uniform convergence of Galerkin method for splines on highly nonuniform meshes”, Math. Comput., 31 (1977), 457–468 | MR | Zbl
[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR