A step elimination method for the dynamic optimal inventory control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1017-1030
Cet article a éte moissonné depuis la source Math-Net.Ru
An $O(n)$ algorithm, where $n$ is the length of the planning interval, is constructed for a special optimal control problem which is useful in some applications.
@article{ZVMMF_1990_30_7_a4,
author = {G. B. Rubal'skii},
title = {A~step elimination method for the dynamic optimal inventory control problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1017--1030},
year = {1990},
volume = {30},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/}
}
TY - JOUR AU - G. B. Rubal'skii TI - A step elimination method for the dynamic optimal inventory control problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 1017 EP - 1030 VL - 30 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/ LA - ru ID - ZVMMF_1990_30_7_a4 ER -
G. B. Rubal'skii. A step elimination method for the dynamic optimal inventory control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1017-1030. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/
[1] Khedli Dzh., Nelineinoe i dinamicheskoe programmirovanie, Mir, M., 1967
[2] Rubalskii G. B., “Determinirovannaya model upravleniya zapasami s periodicheskimi kolebaniyami tsen i sprosa”, Izv. AN SSSR. Tekhn. kibernetika, 1988, no. 6, 89–96 | MR