A step elimination method for the dynamic optimal inventory control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1017-1030

Voir la notice de l'article provenant de la source Math-Net.Ru

An $O(n)$ algorithm, where $n$ is the length of the planning interval, is constructed for a special optimal control problem which is useful in some applications.
@article{ZVMMF_1990_30_7_a4,
     author = {G. B. Rubal'skii},
     title = {A~step elimination method for the dynamic optimal inventory control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1017--1030},
     publisher = {mathdoc},
     volume = {30},
     number = {7},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/}
}
TY  - JOUR
AU  - G. B. Rubal'skii
TI  - A step elimination method for the dynamic optimal inventory control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1017
EP  - 1030
VL  - 30
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/
LA  - ru
ID  - ZVMMF_1990_30_7_a4
ER  - 
%0 Journal Article
%A G. B. Rubal'skii
%T A step elimination method for the dynamic optimal inventory control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1017-1030
%V 30
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/
%G ru
%F ZVMMF_1990_30_7_a4
G. B. Rubal'skii. A step elimination method for the dynamic optimal inventory control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1017-1030. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a4/