On the approximation properties of an implicit difference scheme for the equations of gas dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1093-1102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two- and three-layer versions of a symmetric implicit difference scheme on distributed nets in the case of the one-dimensional equation of gas dynamics in the Euler form are considered. The approximate viscosity of the scheme is investigated by the method of differential approximation. The change in the approximation properties of the scheme when a mobile net is employed is analyzed. The results of a numerical experiment are presented.
@article{ZVMMF_1990_30_7_a10,
     author = {I. I. Vorozhtsov and V. L. Yumashev},
     title = {On the approximation properties of an implicit difference scheme for the equations of gas dynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1093--1102},
     year = {1990},
     volume = {30},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a10/}
}
TY  - JOUR
AU  - I. I. Vorozhtsov
AU  - V. L. Yumashev
TI  - On the approximation properties of an implicit difference scheme for the equations of gas dynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1093
EP  - 1102
VL  - 30
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a10/
LA  - ru
ID  - ZVMMF_1990_30_7_a10
ER  - 
%0 Journal Article
%A I. I. Vorozhtsov
%A V. L. Yumashev
%T On the approximation properties of an implicit difference scheme for the equations of gas dynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1093-1102
%V 30
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a10/
%G ru
%F ZVMMF_1990_30_7_a10
I. I. Vorozhtsov; V. L. Yumashev. On the approximation properties of an implicit difference scheme for the equations of gas dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 7, pp. 1093-1102. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_7_a10/

[1] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[2] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1973 | Zbl

[3] Rikhtmaier R. F., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[4] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[5] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[6] Nokh V. F., “SEL — sovmestnyi eilerovo-lagranzhev metod dlya rascheta nestatsionarnykh dvumernykh zadach”, Vychisl. metody v gidrodinamike, Mir, M., 1967, 128–184

[7] Fuchs L., Zhao H.-S., “Solution of three-dimensional viscous incompressible flows by a multi-grid method”, Internat. J. Numer. Method Fluids, 4 (1984), 539–555 | DOI | Zbl

[8] Zedan M., Schneider G. E., 18th Thermophys. Conf., AIAA-83-1519 (Montreal, 1983)

[9] Goloviznin V. M., Krayushin I. E., Ryazanov M. A., Samarskii A. A., Dvumernye polnostyu konservativnye raznostnye skhemy gazovoi dinamiki s raznesennymi skorostyami, Preprint No 105, IPMatem. AN SSSR, M., 1983

[10] Kostyuk V. Yu., “Chislennoe modelirovanie techenii vyazkoi neszhimaemoi zhidkosti na setke s raznesennymi skorostyami”, Chisl. analiz i pakety prikl. programm, Krasnoyarsk, 1986, 95–106

[11] Samarskii A. A., Popov Yu. N., Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975 | MR

[12] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR | Zbl

[13] Yumashev V. L., “Metod rasstanovki uzlov vdol linii schetnoi setki pri chislennom reshenii zadach matematicheskoi fiziki”, Uch. zap. TsAGI, 15:4 (1984), 115–119