The solution of systems of nonlinear equations of general form
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 837-843
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of finding solutions of a system of equations $F(x)=0$ is investigated, where $F$ is a non-linear operator from $E^n$ to $E^m$, $m. An approach to the solution of such systems in the non-regular case is proposed.
@article{ZVMMF_1990_30_6_a3,
author = {K. N. Belash},
title = {The solution of systems of nonlinear equations of general form},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {837--843},
year = {1990},
volume = {30},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a3/}
}
K. N. Belash. The solution of systems of nonlinear equations of general form. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 837-843. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a3/
[1] Belash K. N., Tretyakov A. A., “Metody resheniya vyrozhdennykh zadach”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1097–1102 | MR | Zbl
[2] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR
[3] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR