Asymptotic error bounds in Galerkin approximation for a certain class of quasipotential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 826-836 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Error bounds for the Galerkin approximation of solutions to the eigenvalue problem are derived for a class of quasipotential integral equations. In the case of completely continuous operators conditions are derived under which the error in the approximate solutions of a spectral problem can be expanded in powers of a parameter $r^{-1}$, where $r$ is the length of the discretization interval of the integral operator, which is defined on a half-line.
@article{ZVMMF_1990_30_6_a2,
     author = {E. P. Zhidkov and E. G. Nikonov and B. N. Khoromsky},
     title = {Asymptotic error bounds in {Galerkin} approximation for a~certain class of quasipotential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {826--836},
     year = {1990},
     volume = {30},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a2/}
}
TY  - JOUR
AU  - E. P. Zhidkov
AU  - E. G. Nikonov
AU  - B. N. Khoromsky
TI  - Asymptotic error bounds in Galerkin approximation for a certain class of quasipotential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 826
EP  - 836
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a2/
LA  - ru
ID  - ZVMMF_1990_30_6_a2
ER  - 
%0 Journal Article
%A E. P. Zhidkov
%A E. G. Nikonov
%A B. N. Khoromsky
%T Asymptotic error bounds in Galerkin approximation for a certain class of quasipotential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 826-836
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a2/
%G ru
%F ZVMMF_1990_30_6_a2
E. P. Zhidkov; E. G. Nikonov; B. N. Khoromsky. Asymptotic error bounds in Galerkin approximation for a certain class of quasipotential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 826-836. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a2/

[1] Logunov A. A., Tavkhelidze A. N., “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR

[2] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., “Quasi-potential approach and the expansion in relativistic spherical functions”, J. Nuovo Cimento, 55A:2 (1968), 232–257

[3] Sidorov A. V., Skachkov H. B., Vychislenie mass i shirin svyazannykh sostoyanii kvarka i antikvarka, Preprint R2-80-45, OIYaI, Dubna, 1980

[4] Zhidkov E. P., Sidorov A. V., Skachkov N. B., Khoromskii B. N., Chislennoe issledovanie integralnogo kvazipotentsialnogo uravneniya dlya svyazannykh sostoyanii, Preprint R11-85-465, OIYaI, Dubna, 1985 | MR

[5] Zhidkov E. P., Sidorov A. V., Skachkov N. B., Khoromskii B. N., Chislennoe reshenie kvazipotentsialnogo uravneniya s nelineinym vkhozhdeniem parametra, Preprint R11-87-261, OIYaI, Dubna, 1987

[6] Zhydkov E. P., Nikonov E. G., Sidorov A. V. et al., Numerical solution of integral equations, describing mass spectrum of vector mesons, Preprint E11-88-494, JINR, Dubna, 1988

[7] Zhidkov E. P., Nikonov E. G., Khoromskii B. N., Reshenie problemy sobstvennykh znachenii dlya odnogo klassa gipersingulyarnykh kvazipotentsialnykh integralnykh uravnenii, Preprint R11-89-188, OIYaI, Dubna, 1989 | MR

[8] Babuska I., Aziz A. K., “Survey lectures on the mathematical foundation of the finite element method”, Math. Foundation Finite Element Method Applic. Partial Different. Equations, Acad. Press, N. Y., 1972, 3–359 | MR

[9] Arnold D. N., Wendland W. L., “On the asymptotic convergence of collocation methods”, Math. Comput., 41 (1983), 349–381 | DOI | MR | Zbl

[10] Arnold D. N., Wendland W. L., “The convergence of spline collocation for strongly elliptic equations of curves”, Numer. Math., 47 (1985), 317–343 | DOI | MR

[11] Ruotsalainen K., Wendland W., “On the boundary element method for some nonlinear boundary value problems”, Numer. Math., 53 (1988), 299–314 | DOI | MR | Zbl

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[13] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[14] Zhidkov E. P., Nikonov E. G., Khoromskii B. N., Asimptoticheskoe predstavlenie reshenii spektralnoi zadachi dlya integrodifferentsialnogo operatora na poluosi, Preprint R11-87-375, OIYaI, Dubna, 1987 | MR

[15] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[17] Gareev F. A., Goncharov S. A., Zhidkov E. P. i dr., “Chislennye resheniya zadach na sobstvennye znacheniya dlya integrodifferentsialnykh uravnenii v teorii yadra”, Zh. vychisl. matem. i matem. fiz., 17:2 (1977), 407–419 | MR | Zbl

[18] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[19] Zhidkov E. P., Khoromskii B. N., Mnogosetochnyi algoritm resheniya chastichnoi problemy na sobstvennye znacheniya dlya klassa matrits tipa teplitsevykh, Preprint R11-84-740, OIYaI, Dubna, 1984 | MR

[20] Zhidkov E. P., Nikonov E. G., Khoromskii B. N., Otsenki effektivnosti dvukhparametricheskoi ekstrapolyatsii dlya odnogo klassa spektralnykh zadach s integralnym operatorom na poluosi, Preprint R11-85-970, OIYaI, Dubna, 1985

[21] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR