Viscous liquid flows that are independent of the Reynolds number
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 951-955
Cet article a éte moissonné depuis la source Math-Net.Ru
All solutions of the Navier–Stokes equations for stationary plane viscous fluid flow that are independent of the Reynolds number are investigated. All solutions with variable vorticity are given explicitly. Constant vorticity solutions are known to include an arbitrary harmonic function. Examples of analytic solutions of the latter type which satisfy adhesion conditions on a quadratic parabola and an ellipse are given.
@article{ZVMMF_1990_30_6_a14,
author = {Yu. D. Shmyglevskii},
title = {Viscous liquid flows that are independent of the {Reynolds} number},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {951--955},
year = {1990},
volume = {30},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a14/}
}
TY - JOUR AU - Yu. D. Shmyglevskii TI - Viscous liquid flows that are independent of the Reynolds number JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 951 EP - 955 VL - 30 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a14/ LA - ru ID - ZVMMF_1990_30_6_a14 ER -
Yu. D. Shmyglevskii. Viscous liquid flows that are independent of the Reynolds number. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 951-955. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a14/