Discrete approximation of extremal problems with operator inequality constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 817-825 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The minimization of a functional subject to non-linear operator constraints is considered from the standpoint of its discrete approximation by a sequence of extremal problems of simpler structure.
@article{ZVMMF_1990_30_6_a1,
     author = {R. Lepp},
     title = {Discrete approximation of extremal problems with operator inequality constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {817--825},
     year = {1990},
     volume = {30},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a1/}
}
TY  - JOUR
AU  - R. Lepp
TI  - Discrete approximation of extremal problems with operator inequality constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 817
EP  - 825
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a1/
LA  - ru
ID  - ZVMMF_1990_30_6_a1
ER  - 
%0 Journal Article
%A R. Lepp
%T Discrete approximation of extremal problems with operator inequality constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 817-825
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a1/
%G ru
%F ZVMMF_1990_30_6_a1
R. Lepp. Discrete approximation of extremal problems with operator inequality constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 817-825. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a1/

[1] Rockafellar R. T., Wets R. J.-B., “The optimal recourse problem in discrete time: $L^1$-multipliers for inequality constraints”, SIAM J. Control and Optimizat., 16:1 (1978), 16–36 | DOI | MR | Zbl

[2] Zalmai G. J., “Optimality conditions and Lagrangian duality in continuous-time nonlinear programming”, J. Math. Analys. and Appl., 109:2 (1985), 426–452 | DOI | MR | Zbl

[3] Donchev A., Sistemy optimalnogo upravleniya, Mir, M., 1987 | MR | Zbl

[4] Vasin V. V., “Diskretnaya approksimatsiya i ustoichivost v ekstremalnykh zadachakh”, Zh. vychisl. matem. i matem. fiz., 22:4 (1982), 824–839 | MR | Zbl

[5] Vasin V. V., “Ustoichivaya diskretizatsiya ekstremalnykh zadach i ee prilozheniya v matematicheskom programmirovanii”, Matem. zametki, 31:2 (1982), 269–280 | MR | Zbl

[6] Liskovets O. A., “Regulyarizatsiya zadach s monotonnymi operatorami pri diskretnoi approksimatsii prostranstv i operatorov”, Zh. vychisl. matem. i matem. fiz., 27:1 (1987), 3–15 | MR | Zbl

[7] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[8] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR

[9] Lepp R. E., “Usloviya diskretnoi approksimatsii prostranstva suschestvenno ogranichennykh funktsii”, Izv. AN EstSSR. Fiz.-matem., 37:2 (1988), 204–208 | MR | Zbl