Non-linear spectra of matrices and extremal problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 803-816
Voir la notice de l'article provenant de la source Math-Net.Ru
Theoretical questions and the computational aspects of the search for the spectral values $\lambda$ and vectors $x\in\mathbb R^m\setminus\{0\}$ of a system $A^{\mathrm T}(Ax)_{(q)}=\lambda^q(x)_{(p)}$, where $A$ is a $k\times m$ matrix, $1\le p$, $q\infty$ are presented. When $p=q=2$ this is simply the problem of determining the singular values of $A$. Nonlinear systems $((p-2)^2+(q-2)^2\ne0)$ arise in many fields of analysis, mechanics and approximation theory.
@article{ZVMMF_1990_30_6_a0,
author = {A. P. Buslaev},
title = {Non-linear spectra of matrices and extremal problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {803--816},
publisher = {mathdoc},
volume = {30},
number = {6},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a0/}
}
A. P. Buslaev. Non-linear spectra of matrices and extremal problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 803-816. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a0/