Non-linear spectra of matrices and extremal problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 803-816 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Theoretical questions and the computational aspects of the search for the spectral values $\lambda$ and vectors $x\in\mathbb R^m\setminus\{0\}$ of a system $A^{\mathrm T}(Ax)_{(q)}=\lambda^q(x)_{(p)}$, where $A$ is a $k\times m$ matrix, $1\le p$, $q<\infty$ are presented. When $p=q=2$ this is simply the problem of determining the singular values of $A$. Nonlinear systems $((p-2)^2+(q-2)^2\ne0)$ arise in many fields of analysis, mechanics and approximation theory.
@article{ZVMMF_1990_30_6_a0,
     author = {A. P. Buslaev},
     title = {Non-linear spectra of matrices and extremal problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {803--816},
     year = {1990},
     volume = {30},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a0/}
}
TY  - JOUR
AU  - A. P. Buslaev
TI  - Non-linear spectra of matrices and extremal problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 803
EP  - 816
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a0/
LA  - ru
ID  - ZVMMF_1990_30_6_a0
ER  - 
%0 Journal Article
%A A. P. Buslaev
%T Non-linear spectra of matrices and extremal problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 803-816
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a0/
%G ru
%F ZVMMF_1990_30_6_a0
A. P. Buslaev. Non-linear spectra of matrices and extremal problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 6, pp. 803-816. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_6_a0/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[2] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy, yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhteorizdat, M.–L., 1950

[3] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[4] Kashin B. S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 334–351 | MR | Zbl

[5] Gluskin E. D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Matem. sb., 120:2 (1983), 180–189 | MR | Zbl

[6] Pinkus A., $n$-Width in approximation theory, Springer, Berlin, 1985 | MR

[7] Pinkus A., “Some extremal problems for strictly totally positive matrices”, Linear Algebra and Appl., 64 (1985), 141–156 | DOI | MR | Zbl

[8] Tikhomirov V. M., “A. H. Kolmogorov i teoriya priblizhenii”, Uspekhi matem. nauk, 44:1(265) (1989), 83–122 | MR

[9] Buslaev A. P., “Vektory s nepreryvnym znakom i nelineinyi spektralnyi analiz matrits”, Tr. MIAN SSSR, 190, M., 1989, 40–48 | MR

[10] Buslaev A. P., “O variatsionnom opisanii spektra vpolne polozhitelnykh matrits i ekstremalnykh zadachakh teorii priblizhenii”, Matem. zametki, 49:1 (1990), 39–46 | MR

[11] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[12] Parlett B., Simmetrichnaya problema sobstvennykh znachenii. Chislennye metody, Mir, M., 1983 | MR | Zbl

[13] Troitskii V. A., Petukhov L. V., Optimizatsiya formy uprugikh tel, Nauka, M., 1982 | MR

[14] Seiranyan A. P., “Ob odnoi zadache Lagranzha”, Izv. AN SSSR. Mekhan. tverdogo tela, 1984, no. 2, 101–111 | MR

[15] Khardi G., Littlvud D. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948