Numerical solution of a quasilinear parabolic equation with a boundary layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 716-726
Voir la notice de l'article provenant de la source Math-Net.Ru
To solve a quasilinear parabolic equation with small parameter multiplying the derivatives with respect to the spatial variables, a numerical method is constructed with an estimate of the error, which is uniform with respect to the parameter. The construction of a nonlinear difference scheme is based on the method of straight lines and on the application of exact systems to one-dimensional problems. The computational mesh is chosen so that its density increases in a suitable way in the neighbourhood of the boundary. We propose that the nonlinear scheme be solved by an iterative algorithm, which converges uniformly with respect to the small parameter.
@article{ZVMMF_1990_30_5_a7,
author = {I. P. Boglaev},
title = {Numerical solution of a~quasilinear parabolic equation with a~boundary layer},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {716--726},
publisher = {mathdoc},
volume = {30},
number = {5},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a7/}
}
TY - JOUR AU - I. P. Boglaev TI - Numerical solution of a quasilinear parabolic equation with a boundary layer JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 716 EP - 726 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a7/ LA - ru ID - ZVMMF_1990_30_5_a7 ER -
I. P. Boglaev. Numerical solution of a quasilinear parabolic equation with a boundary layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 716-726. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a7/