Numerical solution of some quasilinear singularly perturbed heat-conduction equations on nonuniform grids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 680-696 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical methods of solving quasilinear heat-conduction equations with a small parameter for the highest-order derivatives with respect to the spatial variables are considered. Nonlinear difference schemes are constructed by the exact difference scheme method. The proposed schemes are uniformly convergent in the small parameter on arbitrary nonuniform grids. Iterative algorithms uniformly convergent in the small parameter are chosen for solving the nonlinear difference schemes.
@article{ZVMMF_1990_30_5_a4,
     author = {I. P. Boglaev and V. V. Sirotkin},
     title = {Numerical solution of some quasilinear singularly perturbed heat-conduction equations on nonuniform grids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {680--696},
     year = {1990},
     volume = {30},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a4/}
}
TY  - JOUR
AU  - I. P. Boglaev
AU  - V. V. Sirotkin
TI  - Numerical solution of some quasilinear singularly perturbed heat-conduction equations on nonuniform grids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 680
EP  - 696
VL  - 30
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a4/
LA  - ru
ID  - ZVMMF_1990_30_5_a4
ER  - 
%0 Journal Article
%A I. P. Boglaev
%A V. V. Sirotkin
%T Numerical solution of some quasilinear singularly perturbed heat-conduction equations on nonuniform grids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 680-696
%V 30
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a4/
%G ru
%F ZVMMF_1990_30_5_a4
I. P. Boglaev; V. V. Sirotkin. Numerical solution of some quasilinear singularly perturbed heat-conduction equations on nonuniform grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 680-696. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a4/

[1] Boglaev I. P., Vilenkin A. Ya., Kopetskii Ch. V. i dr., O chislennom modelirovanii teplovykh rezhimov protsessa polucheniya amorfnoi lenty, Preprint, IFTT AN SSSR, Chernogolovka, 1983

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[3] Boglaev I. P., “Priblizhennoe reshenie nelineinoi kraevoi zadachi s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 24:11 (1984), 1649–1656 | MR | Zbl

[4] Brish N. I., “O kraevykh zadachakh dlya uravneniya $\varepsilon y''=f(x, y, y')$ pri malykh $\varepsilon$”, Dokl. AN SSSR, 95:3 (1954), 429–432

[5] Boglaev I. P., O raznostnom metode resheniya kraevoi zadachi s malym parametrom pri starshei proizvodnoi, Preprint, IPTM AN SSSR, Chernogolovka, 1981 | MR

[6] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[8] Oleinik O. A., Kruzhkov S. N., “Kvazilineinye parabolicheskie uravneniya vtorogo poryadka so mnogimi nezavisimymi peremennymi”, Uspekhi matem. nauk, 16:5 (1961), 115–155 | MR

[9] Boglaev I. P., O chislennom reshenii nekotorykh singulyarno vozmuschennykh zadach dlya kvazilineinykh uravnenii ellipticheskogo i parabolicheskogo tipov, Preprint, IPTM AN SSSR, Chernogolovka, 1987