Convex optimization with prescribed accuracy
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 663-671
Cet article a éte moissonné depuis la source Math-Net.Ru
A finite method is proposed for solving a convex programming problem with given error in the functional. Bounds are established for the number of iterations. A finite method is designed for solving a successive convex programming problem with concessions.
@article{ZVMMF_1990_30_5_a2,
author = {A. N. Kulikov and V. R. Fazylov},
title = {Convex optimization with prescribed accuracy},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {663--671},
year = {1990},
volume = {30},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a2/}
}
A. N. Kulikov; V. R. Fazylov. Convex optimization with prescribed accuracy. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 663-671. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a2/
[1] Fazylov V. R., “Odin obschii metod otyskaniya tochki vypuklogo mnozhestva”, Izv. vuzov. Matematika, 1983, no. 6, 43–51 | MR | Zbl
[2] Kulikov A. N., Fazylov V. R., “Konechnyi metod resheniya sistem vypuklykh neravenstv”, Izv. vuzov. Matematika, 1984, no. 11, 59–63 | MR | Zbl
[3] Kulikov A. N., Fazylov V. R., “Konechnyi metod linearizatsii dlya sistem vypuklykh neravenstv”, Kibernetika, 1987, no. 4, 36–40 | MR | Zbl
[4] Eremin I. I., “O zadachakh posledovatelnogo programmirovaniya”, Sibirskii matem. zh., 14:1 (1973), 53–63 | MR | Zbl
[5] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl