Convergence of the finite element method with one iteration
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 791-796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of finite elements with one iteration for elliptic boundary value problems is investigated. Approximate solutions obtained by this method have high order of convergence than if no iteration is used.
@article{ZVMMF_1990_30_5_a15,
     author = {A. V. Dzhishkariani},
     title = {Convergence of the finite element method with one iteration},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {791--796},
     year = {1990},
     volume = {30},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a15/}
}
TY  - JOUR
AU  - A. V. Dzhishkariani
TI  - Convergence of the finite element method with one iteration
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 791
EP  - 796
VL  - 30
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a15/
LA  - ru
ID  - ZVMMF_1990_30_5_a15
ER  - 
%0 Journal Article
%A A. V. Dzhishkariani
%T Convergence of the finite element method with one iteration
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 791-796
%V 30
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a15/
%G ru
%F ZVMMF_1990_30_5_a15
A. V. Dzhishkariani. Convergence of the finite element method with one iteration. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 791-796. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a15/

[1] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[2] Chandler G. A., Superconvergence of numerical solution to second kind integral equations, Ph. D. Thesis, ANU, Camberra, Australia, 1979

[3] Chatelin F., Lebbar R., “Superconvergence results for the iteratived projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem”, J. Integral Equations, 6 (1984), 71–91 | MR | Zbl

[4] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[5] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[6] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[7] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979

[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl