On generalized discrepancy principle and generalized discrepancy method for $L$-pseudosolutions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 643-651 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Regularizing algorithms to determine approximations to $L$-pseudo-solutions are proposed on the basis of a generalized residual principle and a generalized residual method, when the initial data are specified only approximately. It is shown that the algorithms are equivalent.
@article{ZVMMF_1990_30_5_a0,
     author = {B. Aliev},
     title = {On generalized discrepancy principle and generalized discrepancy method for $L$-pseudosolutions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {643--651},
     year = {1990},
     volume = {30},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a0/}
}
TY  - JOUR
AU  - B. Aliev
TI  - On generalized discrepancy principle and generalized discrepancy method for $L$-pseudosolutions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 643
EP  - 651
VL  - 30
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a0/
LA  - ru
ID  - ZVMMF_1990_30_5_a0
ER  - 
%0 Journal Article
%A B. Aliev
%T On generalized discrepancy principle and generalized discrepancy method for $L$-pseudosolutions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 643-651
%V 30
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a0/
%G ru
%F ZVMMF_1990_30_5_a0
B. Aliev. On generalized discrepancy principle and generalized discrepancy method for $L$-pseudosolutions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 5, pp. 643-651. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_5_a0/

[1] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[2] Morozov V. A., Metody regulyarizatsii neustoichivykh zadach, Izd-vo MGU, M., 1987 | MR

[3] Goncharskii A. V., Leonov A. S., Yagola A. G., “Obobschennyi printsip nevyazki”, Zh. vychisl. matem. i matem. fiz., 13:2 (1973), 294–302

[4] Aliev B., “Obobschennyi printsip nevyazki dlya $L$-psevdoreshenii”, Zh. vychisl. matem. i matem. fiz., 27:2 (1987), 286–290 | MR

[5] Aliev B., “O vybore parametra regulyarizatsii po obobschennomu printsipu nevyazki dlya $L$-psevdoreshenii”, Tezisy dokl. Vses. shkoly molodykh uchenykh “Funktsion. metody v prikl. matem. i matem. fiz.”, v. 2, TashGU, Tashkent, 1988

[6] Goncharskii A. V., Leonov A. S., Yagola A. G., “Ob odnom regulyarizuyuschem algoritme dlya nekorrektno postavlennykh zadach s priblizhenno zadannym operatorom”, Zh. vychisl. matem. i matem. fiz., 12:6 (1972), 1592–1594

[7] Yagola A. G., “O vybore parametra regulyarizatsii pri reshenii nekorrektnykh zadach v refleksivnykh prostranstvakh”, Zh. vychisl. matem. i matem. fiz., 20:3 (1980), 586–596 | MR | Zbl

[8] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Regulyariziruyuschie algoritmy i apriornaya informatsiya, Nauka, M., 1983 | MR

[9] Kochikov I. V., Matvienko A. N., Yagola A. G., “Obobschennyi printsip nevyazki dlya resheniya nesovmestnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 24:7 (1984), 1087–1090 | MR | Zbl

[10] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[11] Ventsel E. S., Kobylinskii V. G., Levin A. M., “Primenenie metoda regulyarizatsii dlya chislennogo resheniya zadachi izgiba tonkikh uprugikh plastinok”, Zh. vychisl. matem. i matem. fiz., 24:2 (1984), 323–328 | MR | Zbl