The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 513-520
Cet article a éte moissonné depuis la source Math-Net.Ru
Best possible bounds are derived for the rate of convergence of a version of the finite element method for the main boundary-value problems of the theory of flat shells in a polygonal region. Approximation theorems are proved for the Sobolev weight spaces, making it possible to derive bounds with minimal assumptions on the smoothness of the solution. Recommendations are made concerning the choice of the degrees of the approximating splines, depending on the smoothness of the solution.
@article{ZVMMF_1990_30_4_a3,
author = {L. V. Maslovskaya},
title = {The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {513--520},
year = {1990},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a3/}
}
TY - JOUR AU - L. V. Maslovskaya TI - The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 513 EP - 520 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a3/ LA - ru ID - ZVMMF_1990_30_4_a3 ER -
%0 Journal Article %A L. V. Maslovskaya %T The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1990 %P 513-520 %V 30 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a3/ %G ru %F ZVMMF_1990_30_4_a3
L. V. Maslovskaya. The best possible for the convergence of the semimixed finite element method for the main boundary-value problems of the theory of shallow shells in polygonal regions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 513-520. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a3/
[1] Maslovskaya L. V., “Skhodimost polusmeshannogo metoda konechnykh elementov dlya osnovnykh kraevykh zadach teorii pologikh obolochek v vesovykh prostranstvakh Soboleva”, Izv. vuzov. Matematika, 1988, no. 3, 36–43 | MR
[2] Maslovskaya L. V., Filippovich A. P., “Polusmeshannyi metod konechnykh elementov v zadachakh o deformatsii pologikh obolochek”, Zh. vychisl. matem. i matem. fiz., 25:8 (1985), 1235–1245 | MR | Zbl
[3] Kufner A., “Einige Eigenschaften der Sobolevschen Räume mit Belegungsfunktion”, Czechosl. Math. J., 15(90):4 (1965), 597–620 | MR | Zbl
[4] Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Numer. Analys., 14:3 (1980), 249–277 | MR | Zbl