The flow of a heavy liquid in the presence of a periodic impressed force
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 501-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods of the theory of branching of solutions of non-linear operator equations are used to investigate the flow of a heavy liquid in the presence of a periodic impressed force. A method of searching for non-analytic solutions of the problem in the neighbourhood of a resonance is described, along with the results of numerical computations.
@article{ZVMMF_1990_30_4_a2,
     author = {S. A. Gabov and M. B. Tverskoy},
     title = {The flow of a~heavy liquid in the presence of a periodic impressed force},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {501--512},
     year = {1990},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a2/}
}
TY  - JOUR
AU  - S. A. Gabov
AU  - M. B. Tverskoy
TI  - The flow of a heavy liquid in the presence of a periodic impressed force
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 501
EP  - 512
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a2/
LA  - ru
ID  - ZVMMF_1990_30_4_a2
ER  - 
%0 Journal Article
%A S. A. Gabov
%A M. B. Tverskoy
%T The flow of a heavy liquid in the presence of a periodic impressed force
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 501-512
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a2/
%G ru
%F ZVMMF_1990_30_4_a2
S. A. Gabov; M. B. Tverskoy. The flow of a heavy liquid in the presence of a periodic impressed force. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 501-512. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a2/

[1] Sekerzh-Zenkovich Ya. I., “O sostavnykh ustanovivshikhsya gravitatsionnykh volnakh konechnoi amplitudy”, Prikl. matem. i mekhan., 33:4 (1969), 648–658 | MR

[2] Tverskoi M. B., “K zadache ob opredelenii svobodnykh i vynuzhdennykh voln konechnoi amplitudy na poverkhnosti tyazheloi zhidkosti”, Matem. modelirovanie, 1:9 (1989), 64–72 | MR

[3] Sretenskii L. N., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977

[4] Gabov S. A., “O suschestvovanii ustanovivshikhsya voln konechnoi amplitudy na poverkhnosti flotiruyuschei zhidkosti”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1507–1519 | MR | Zbl

[5] Gabov S. A., Tverskoi M. B., “Techenie flotiruyuschei zhidkosti konechnoi glubiny pri nalichii peremennogo davleniya na svobodnoi poverkhnosti”, Matem. modelirovanie, 1:3 (1989), 110–122 | MR | Zbl

[6] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[7] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[8] Bokhner S., Martin U. T., Funktsii mnogikh kompleksnykh peremennykh, Izd-vo inostr. lit., M., 1951

[9] Gabov S. A., Tverskoi M. V., “O vychislenii parametrov ustanovivshikhsya voln konechnoi amplitudy na poverkhnosti flotiruyuschei zhidkosti”, Matem. modelirovanie, 1:2 (1989), 109–118 | MR