Two methods for solving the problem of heat transfer in a rarefied gas
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 623-626 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of stationary one-dimensional heat flow between parallel flat surfaces in a rarefied gas is solved using two independent numerical methods: the finite difference method of direct solution of the Boltzmann equation and the method of direct statistical simulation. By comparing the results, the accuracy of the methods is established and the algorithms for solving the problem are verified. The features of the flow are investigated for a wide range of Knudsen numbers.
@article{ZVMMF_1990_30_4_a14,
     author = {V. V. Aristov and M. S. Ivanov and F. G. Cheremisin},
     title = {Two methods for solving the problem of heat transfer in a~rarefied gas},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {623--626},
     year = {1990},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a14/}
}
TY  - JOUR
AU  - V. V. Aristov
AU  - M. S. Ivanov
AU  - F. G. Cheremisin
TI  - Two methods for solving the problem of heat transfer in a rarefied gas
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 623
EP  - 626
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a14/
LA  - ru
ID  - ZVMMF_1990_30_4_a14
ER  - 
%0 Journal Article
%A V. V. Aristov
%A M. S. Ivanov
%A F. G. Cheremisin
%T Two methods for solving the problem of heat transfer in a rarefied gas
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 623-626
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a14/
%G ru
%F ZVMMF_1990_30_4_a14
V. V. Aristov; M. S. Ivanov; F. G. Cheremisin. Two methods for solving the problem of heat transfer in a rarefied gas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 623-626. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a14/

[1] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[2] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Boltsmana v zadache o teploperedache mezhdu parallelnymi beskonechnymi stenkami v razrezhennom gaze”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1970, no. 5, 190–193

[3] Limar E. F., Sedova E. S., Yanitskii V. E., “Sravnenie dvukh reshenii zadachi o teploperedache v razrezhennom gaze”, Chisl. metody v dinamike razrezhennykh gazov, 4, VTs AN SSSR, M., 1979, 117–129

[4] Aristov V. V., Cheremisin F. T., “Konservativnyi metod rasschepleniya dlya resheniya uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 191–207 | MR | Zbl

[5] Ivanov M. S., Rogazinskii S. V., “Sravnitelnyi analiz algoritmov metoda pryamogo statisticheskogo modelirovaniya v dinamike razrezhennogo gaza”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1058–1070 | MR | Zbl

[6] Aristov V. V., Cheremisin F.Ṫ., “Reshenie odnomernykh i dvumernykh zadach dlya uravneniya Boltsmana”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1987