On the solvability of the problem of the development of a domain of turbulent homogeneous fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 616-619 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-dimensional model problem concerning the diffusion of a domain of turbulent perturbations in a homogeneous fluid is considered. It is assumed that the process takes place in a half-strip and is characterized by the equation of balance for the turbulent energy. A theorem on the existence of a solution is proved.
@article{ZVMMF_1990_30_4_a12,
     author = {V. N. Grebenev},
     title = {On the solvability of the problem of the development of a~domain of turbulent homogeneous fluid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {616--619},
     year = {1990},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a12/}
}
TY  - JOUR
AU  - V. N. Grebenev
TI  - On the solvability of the problem of the development of a domain of turbulent homogeneous fluid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 616
EP  - 619
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a12/
LA  - ru
ID  - ZVMMF_1990_30_4_a12
ER  - 
%0 Journal Article
%A V. N. Grebenev
%T On the solvability of the problem of the development of a domain of turbulent homogeneous fluid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 616-619
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a12/
%G ru
%F ZVMMF_1990_30_4_a12
V. N. Grebenev. On the solvability of the problem of the development of a domain of turbulent homogeneous fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 616-619. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a12/

[1] Vasilev O. F., Kuznetsov B. G., Lytkin Yu. M., Chernykh G. G., “Razvitie oblasti turbulizovannoi zhidkosti v statifitsirovannoi srede”, Materialy Mezhdunar. simpoziuma po stratifitsirovannym techeniyam, ITPM SO AN SSSR, Novosibirsk, 1972, 2–14

[2] Barenblatt G. G., “Rasplyvanie turbulentnogo sloya”, N. E. Kochin i razvitie mekhaniki, Nauka, M., 1984, 194–201 | MR

[3] Meirmanov A. M., Pukhnachev V. V., “Lagranzhevy koordinaty v zadache Stefana”, Dinamika sploshnoi sredy, 47, IGiL SO AN SSSR, Novosibirsk, 1980, 90–111 | MR

[4] Kalashnikov A. S., “Voprosy teorii vyrozhdayuschikhsya parabolicheskikh uravnenii”, Uspekhi matem. nauk, 42:2 (1987), 135–176 | MR | Zbl

[5] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[6] Knerr B. F., “The porous medium equation in one dimension”, Trans. Amer. Math. Soc., 234:2 (1977), 381–415 | DOI | MR | Zbl

[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1979 | MR

[8] Diaz J. I., Kesner R., On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, Techn. Summary Rept. No. 2502, Univ. Wisconsin, Math. Res. Center, Madison, 1983 | Zbl

[9] Kalashnikov A. S., “O vliyanii rosta granichnykh dannykh na povedenie temperatury nelineinoi nestatsionarnoi sredy pri bolshikh znacheniyakh vremeni”, Vestn. MGU. Ser. 1. Matem., mekhan., 1986, no. 2, 40–45 | MR | Zbl

[10] Knerr B. F., “The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension”, Trans. Amer. Math. Soc., 249:2 (1979), 409–424 | DOI | MR | Zbl

[11] Kalashnikov A. S., “O kharaktere rasprostraneniya vozmuschenii v zadachakh nelineinoi teploprovodnosti s pogloscheniem”, Zh. vychisl. matem. i matem. fiz., 14:4 (1974), 891–905 | MR