The method of artificial viscosity for computing one-dimensional flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 601-610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the artificial tensor viscosity, which was used earlier for spherical flows only, is proposed for each of the following three types of one-dimensional flows: flows in a plane, cylindrical flows, and spherical flows. The choice of specific values for the six free parameters of artificial viscosity of fairly general form considered in this paper is illustrated by examples of two types of flows, which can often be found in applied problems.
@article{ZVMMF_1990_30_4_a10,
     author = {M. M. Basko},
     title = {The method of artificial viscosity for computing one-dimensional flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {601--610},
     year = {1990},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a10/}
}
TY  - JOUR
AU  - M. M. Basko
TI  - The method of artificial viscosity for computing one-dimensional flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 601
EP  - 610
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a10/
LA  - ru
ID  - ZVMMF_1990_30_4_a10
ER  - 
%0 Journal Article
%A M. M. Basko
%T The method of artificial viscosity for computing one-dimensional flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 601-610
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a10/
%G ru
%F ZVMMF_1990_30_4_a10
M. M. Basko. The method of artificial viscosity for computing one-dimensional flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 4, pp. 601-610. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_4_a10/

[1] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[2] von Neumann J., Richtmyer R. D., “A method for the numerical calculations of hydrodynamical shocks”, J. Appl. Phys., 21 (1950), 232–238 | DOI | MR

[3] Cameron I. G., “An analysis of the errors caused by using artificial viscosity terms to represent steady-state shock waves”, J. Comput. Phys., 1:1 (1966), 1–20 | DOI | MR | Zbl

[4] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR

[5] Winkler K.-H. A., Norman M. L., Mihalas D., “Implicit adaptive-grid radiation hydrodynamics”, Multiple Time Scales, Acad. Press, N. Y., 1985, 145–184 | MR

[6] Brushlinskii K. V., Kazhdan Ya. M., “Ob avtomodelnykh resheniyakh nekotorykh zadach gazovoi dinamiki”, Uspekhi matem. nauk, 18:2(110) (1963), 3–23 | MR

[7] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966