Accurate estimates for the amplitude and support of unbounded solutions of the nonlinear heat-conduction equation with a source
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 438-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Accurate (best possible) upper estimates are obtained for the amplitude and length of support of unbounded solutions of the quasilinear degenerate parabolic equation of non-linear heat conduction with a source. The estimates are established by means of a special “comparison by intersections” technique with an exact non-invariant solution of the equation with the same existence time. This comparison, moreover, illustrates the fact that the Cauchy problem for the equation with a delta-function as the initial datum is solvable.
@article{ZVMMF_1990_30_3_a8,
     author = {V. A. Galaktionov},
     title = {Accurate estimates for the amplitude and support of unbounded solutions of the nonlinear heat-conduction equation with a~source},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {438--448},
     year = {1990},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a8/}
}
TY  - JOUR
AU  - V. A. Galaktionov
TI  - Accurate estimates for the amplitude and support of unbounded solutions of the nonlinear heat-conduction equation with a source
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 438
EP  - 448
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a8/
LA  - ru
ID  - ZVMMF_1990_30_3_a8
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%T Accurate estimates for the amplitude and support of unbounded solutions of the nonlinear heat-conduction equation with a source
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 438-448
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a8/
%G ru
%F ZVMMF_1990_30_3_a8
V. A. Galaktionov. Accurate estimates for the amplitude and support of unbounded solutions of the nonlinear heat-conduction equation with a source. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 438-448. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a8/

[1] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “O neogranichennykh resheniyakh zadachi Koshi dlya parabolicheskogo uravneniya $u_t=\nabla(u^\delta\nabla u)+u^\beta$”, Dokl. AN SSSR, 252:6 (1980), 1362–1364 | MR | Zbl

[2] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[3] Galaktionov V. A., Posashkov S. A., Neogranichennoe tochnoe reshenie uravneniya nelineinoi teploprovodnosti s istochnikom, Preprint No 42, IPM AN SSSR, M., 1988

[4] Galaktionov V. A., Posashkov S. A., “O novykh tochnykh resheniyakh parabolicheskikh uravnenii s kvadratichnymi nelineinostyami”, Zh. vychisl. matem. i matem. fiz., 29:4 (1989), 497–506 | MR

[5] Galaktionov V. A., “Dokazatelstvo lokalizatsii neogranichennykh reshenii nelineinogo parabolicheskogo uravneniya $u_t=(u^\delta u_x)_x+u^\beta$”, Differents. ur-niya, 21:7 (1985), 15–23 | MR | Zbl

[6] Oleinik O. A., “Ob uravneniyakh tipa uravneniya nestatsionarnoi filtratsii”, Dokl. AN SSSR, 113:6 (1957), 1210–1213 | MR

[7] Oleinik O. A., Kalashnikov A. S., Chzhou Yui-lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 667–704 | MR | Zbl

[8] Sacks P. E., “The initial and boundary value problem for a class of degenerate parabolic equations”, Communs. Part. Different. Equation, 8 (1983), 693–733 | DOI | MR | Zbl

[9] Levine H. A., Sacks P. E., “Some existence and nonexistence theorems for solutions of degenerate parabolic equations”, J. Different. Equation, 52 (1984), 135–161 | DOI | MR | Zbl

[10] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya uravnenii vtorogo poryadka”, Uspekhi matem. nauk, 42:2 (1987), 135–176 | MR | Zbl

[11] Brezis H., Crandall M. G., “Uniqueness of solutions of the initial-value problem for $u_t-\Delta\varphi(u)=0$”, J. math. pures et appl., 58 (1979), 153–163 | MR | Zbl

[12] Pierre M., “Uniqueness of the solutions of $u_t-\Delta\varphi(u)=0$ with initial datum a measure”, Nonlinear Analys.: Theory. Meth. and Appl., 6 (1982), 175–187 | DOI | MR | Zbl

[13] Brezis H., Friedman A., “Nonlinear parabolic equations involving measures as initial conditions”, J. math. pures et appl., 62 (1983), 73–97 | MR | Zbl

[14] Kamin S., Peletier L. A., “Source-type solutions of degenerate diffusion equations with absorption”, Israel J. Math., 50 (1985), 219–230 | DOI | MR | Zbl

[15] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[16] Galaktionov V. A., Posashkov S. A., “Primenenie novykh teorem sravneniya k issledovaniyu neogranichennykh reshenii nelineinykh parabolicheskikh uravnenii”, Differents. ur-niya, 22:7 (1986), 1165–1173 | MR | Zbl