Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 420-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the programming of a new algorithm involving a certain numbering of the unknowns is proposed, the use of which does not require permutation of rows and columns of the system to ensure stability of the solution algorithm. A method is proposed for solving the corresponding system of linear algebraic equations, whose matrix is not positive-definite but is of a special form.
@article{ZVMMF_1990_30_3_a6,
     author = {A. A. Kobozeva and L. V. Maslovskaya},
     title = {Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {420--429},
     year = {1990},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a6/}
}
TY  - JOUR
AU  - A. A. Kobozeva
AU  - L. V. Maslovskaya
TI  - Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 420
EP  - 429
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a6/
LA  - ru
ID  - ZVMMF_1990_30_3_a6
ER  - 
%0 Journal Article
%A A. A. Kobozeva
%A L. V. Maslovskaya
%T Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 420-429
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a6/
%G ru
%F ZVMMF_1990_30_3_a6
A. A. Kobozeva; L. V. Maslovskaya. Programming a generalized cholesky algorithm for mixed discrete analogues of elliptic boundary-value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 420-429. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a6/

[1] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 67–74 | MR

[2] Jonson C., “On the convergence of a mixed finite element method for plate bending problems”, Numer. Math., 21 (1973), 43–62 | DOI | MR

[3] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[4] Norri D., Friz Zh., Vvedenie v metod konechnykh elementov, Mir, M., 1981 | MR | Zbl

[5] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[6] Ikramov Kh. D., Chislennye metody dlya simmetrichnykh lineinykh sistem, Nauka, M., 1988 | MR

[7] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[8] Timoshenko S. P., Plastinki i obolochki, Gostekhteorizdat, M., 1948