The convergence in $W_2^2$ of a difference solution of the Dirichlet problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 470-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An estimate of the rate of convergence of the difference scheme considered in a net metric $W_2^2$, matched with the smoothness of the required solution, is established when the solution of the initial problem belongs to Sobolev spaces.
@article{ZVMMF_1990_30_3_a12,
     author = {G. K. Berikelashvili},
     title = {The convergence in $W_2^2$ of a~difference solution of the {Dirichlet} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {470--474},
     year = {1990},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a12/}
}
TY  - JOUR
AU  - G. K. Berikelashvili
TI  - The convergence in $W_2^2$ of a difference solution of the Dirichlet problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 470
EP  - 474
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a12/
LA  - ru
ID  - ZVMMF_1990_30_3_a12
ER  - 
%0 Journal Article
%A G. K. Berikelashvili
%T The convergence in $W_2^2$ of a difference solution of the Dirichlet problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 470-474
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a12/
%G ru
%F ZVMMF_1990_30_3_a12
G. K. Berikelashvili. The convergence in $W_2^2$ of a difference solution of the Dirichlet problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 470-474. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a12/

[1] Nitsche J., Nitsche J. C. C., “Error estimates for the numerical solution of elliptic differential equations”, Arch. Ration. Mech. and Analys., 5:4 (1960), 293–306 | DOI | MR | Zbl

[2] Bakhvalov H. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 861–883 | Zbl

[3] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach, v. 1, Izd-vo MGU, M., 1971

[4] Dzhishkariani A. V., “Skhodnye raznostnye operatory”, Tr. Tbilisskogo matem. in-ta, 65, Tbilisi, 1980, 38–50 | MR | Zbl

[5] Berikelashvili G. K., Sulkhanishvili G. I., O skhodimosti raznostnykh skhem dlya ellipticheskikh uravnenii s peremennymi koeffitsientami i resheniyami iz sobolevskikh prostranstv, Dep. v Gruz. NIINTI 04.12.1985, No 190-G

[6] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[7] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987

[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl