Numerical canonical factorization algorithms and their application
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 339-354
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of numerical algorithms for canonical factorization, of two types: a) polar decomposition of an arbitrary bounded operator in $H$-space, and b) factorization of an operator-valued function of the unilateral shift operator in the space $l_2$.
@article{ZVMMF_1990_30_3_a0,
author = {R. P. Tarasov},
title = {Numerical canonical factorization algorithms and their application},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {339--354},
year = {1990},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a0/}
}
R. P. Tarasov. Numerical canonical factorization algorithms and their application. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_3_a0/
[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1966
[2] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR | Zbl
[3] Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov, v. 1, Prognoz i upravlenie, Mir, M., 1974
[4] Childers D. G., Skinner D. P., Kemerait R. C., “The cepstrum: a guide to processing”, IEEE, 65:10 (1977), 1428–1443 | DOI
[5] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, Izd-vo inostr. lit., M., 1963
[6] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Izd-vo inostr. lit., M., 1962 | MR