Localized solutions of a certain non-linear second-order differential equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 2, pp. 319-320
Cet article a éte moissonné depuis la source Math-Net.Ru
A numerical investigation is carried out of bounded solutions of the equation if $(R'+R/r)'=R-R\{R^2+\alpha(R'+R/r)^2\}$ which decrease at infinity. It is shown that if $\alpha>0.145$ there are no solutions.
@article{ZVMMF_1990_30_2_a13,
author = {B. V. Gisin},
title = {Localized solutions of a certain non-linear second-order differential equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {319--320},
year = {1990},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a13/}
}
TY - JOUR AU - B. V. Gisin TI - Localized solutions of a certain non-linear second-order differential equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 319 EP - 320 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a13/ LA - ru ID - ZVMMF_1990_30_2_a13 ER -
B. V. Gisin. Localized solutions of a certain non-linear second-order differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 2, pp. 319-320. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a13/
[1] Finkelstein R., Le-Leve R., Ruderman M., “Nelineinye spinornye polya”, Nelineinaya kvantovaya teoriya polya, Izd-vo inostr. lit., M., 1959, 257–275
[2] Chiao R. Y., Garmire E., Townes C. H., “Self-trapping of optical beam”, Phys. Rev. Letts., 13:15 (1964) | DOI
[3] Gisin B. V., “Lokalizatsiya voln v nelineinoi srede perpendikulyarno napravleniyu rasprostraneniya”, Radiotekhnika, 1988, no. 10, 76–78