Investigation of an equation of electrophysics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 2, pp. 291-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The vector integral equation $$ \alpha\mathbf M+\nabla\int_\Omega\mathbf M\nabla|x-y|^{-1}\,dy=\mathbf H,\qquad\alpha\ge0,\quad\Omega\subset\mathbb R^3, $$ encountered in classical problems of electrostatics and magnetostatics, is investigated. The structure and properties of its solutions are investigated by studying the corresponding integral operator, and a numerical method is proposed.
@article{ZVMMF_1990_30_2_a10,
     author = {V. V. Dyakin and V. Ya. Raevskii},
     title = {Investigation of an equation of electrophysics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {291--297},
     year = {1990},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a10/}
}
TY  - JOUR
AU  - V. V. Dyakin
AU  - V. Ya. Raevskii
TI  - Investigation of an equation of electrophysics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 291
EP  - 297
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a10/
LA  - ru
ID  - ZVMMF_1990_30_2_a10
ER  - 
%0 Journal Article
%A V. V. Dyakin
%A V. Ya. Raevskii
%T Investigation of an equation of electrophysics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 291-297
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a10/
%G ru
%F ZVMMF_1990_30_2_a10
V. V. Dyakin; V. Ya. Raevskii. Investigation of an equation of electrophysics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a10/

[1] Khizhnyak N. A., Integralnye uravneniya makroskopicheskoi elektrodinamiki, Nauk. dumka, Kiev, 1966 | MR

[2] Raev V. K., Khodenkov G. E., Tsilindricheskie magnitnye domeny v elementakh vychislitelnoi tekhniki, Energoizdat, M., 1981

[3] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[4] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation, 1”, SIAM J. Appl. Math., 39:1 (1980), 14–20 | DOI | MR

[5] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shkola, M., 1977 | MR

[6] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59, M., 1960, 5–36 | MR

[7] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation, 3”, SIAM J. Math. Analys., 12:4 (1981), 536–540 | DOI | MR | Zbl

[8] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhteorizdat, M., 1953 | MR

[9] Smirnov V. I., Kurs vysshei matematiki, Nauka, M., 1981

[10] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Dop. k kn.: Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–413 | MR

[11] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[12] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[13] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965

[14] Chegis I. A., “Nakhozhdenie potentsiala, svyazannogo s resheniem sistemy integralnykh uravnenii Fredgolma I roda”, Zh. vychisl. matem. i matem. fiz., 22:3 (1982), 739–742 | MR | Zbl

[15] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977 | MR | Zbl

[16] Raevskii V. Ya., Matematicheskoe issledovanie domenoprodvigayuschikh sistem dlya zapominayuschikh ustroistv, Dis. ...kand. fiz.-matem. nauk, IFM UrO AN SSSR, Sverdlovsk, 1986, 159 pp.