Reinsch's method for solving the smoothing problem in several dimensions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 2, pp. 186-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Reinsch's method for constructing cubic smoothing splines is generalized to the multidimensional case. Solution of the smoothing problem reduces to repeated solution of systems of equations with positive definite matrices. The algorithm is described in detail.
@article{ZVMMF_1990_30_2_a1,
     author = {M. I. Ignatov and A. B. Pevnyi},
     title = {Reinsch's method for solving the smoothing problem in several dimensions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {186--192},
     year = {1990},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a1/}
}
TY  - JOUR
AU  - M. I. Ignatov
AU  - A. B. Pevnyi
TI  - Reinsch's method for solving the smoothing problem in several dimensions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 186
EP  - 192
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a1/
LA  - ru
ID  - ZVMMF_1990_30_2_a1
ER  - 
%0 Journal Article
%A M. I. Ignatov
%A A. B. Pevnyi
%T Reinsch's method for solving the smoothing problem in several dimensions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 186-192
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a1/
%G ru
%F ZVMMF_1990_30_2_a1
M. I. Ignatov; A. B. Pevnyi. Reinsch's method for solving the smoothing problem in several dimensions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 2, pp. 186-192. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_2_a1/

[1] Schoenberg I. J., “Spline functions and t he problem of graduation”, Proc. Nat. Acad. Sci. USA, 52 (1964), 947–950 | DOI | MR | Zbl

[2] Reinsch C. H., “Smoothing by spline functions”, Numer. Math., 10:3 (1967), 177–183 | DOI | MR | Zbl

[3] Reinsch C. H., “Smoothing by spline functions, II”, Numer. Math., 16:5 (1971), 451–454 | DOI | MR

[4] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[5] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[6] Duchon J., “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Lect. Notes in Math., 571, 1977, 85–100 | MR | Zbl

[7] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[8] Malozemov V. N., Pevnyi A. B., Polinomialnye splainy, Izd-vo LGU, L., 1986 | MR | Zbl

[9] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1983 | MR

[10] Ignatov M. I., Pevnyi A. B., “Approksimatsiya geologicheskikh poverkhnostei sglazhivayuschimi naturalnymi splainami s uchetom elementov zaleganiya”, Metody i algoritmy podscheta zapasov neftyanykh mestorozhdenii, 57, In-t geol. Komi fil. AN SSSR, Syktyvkar, 1986, 25–40

[11] Anselone P. M., Laurent P.-J., “A general method for the construction of interpolating or smoothing spline-functions”, Numer. Math., 12:1 (1968), 66–82 | DOI | MR | Zbl

[12] Franke R., “Smooth interpolation of scattered data by local thin plate splines”, Comput. and Math. Appls., 8:4 (1982), 273–281 | DOI | MR | Zbl