An iterative method of quasi-solution in problems of diffraction by dielectric bodies
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 99-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the problem of diffraction by a uniform dielectric body is reduced to the solution of a system of integral equations of the first kind over the boundary. The method of minimum discrepancies is used to construct an approximate solution, and the necessary condition for it to converge is obtained.
@article{ZVMMF_1990_30_1_a8,
     author = {Yu. A. Eremin and A. G. Sveshnikov},
     title = {An iterative method of quasi-solution in problems of diffraction by dielectric bodies},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {99--106},
     year = {1990},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a8/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - An iterative method of quasi-solution in problems of diffraction by dielectric bodies
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 99
EP  - 106
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a8/
LA  - ru
ID  - ZVMMF_1990_30_1_a8
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T An iterative method of quasi-solution in problems of diffraction by dielectric bodies
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 99-106
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a8/
%G ru
%F ZVMMF_1990_30_1_a8
Yu. A. Eremin; A. G. Sveshnikov. An iterative method of quasi-solution in problems of diffraction by dielectric bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 99-106. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a8/

[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[2] Kim T. J., Thiele G. A., “A hybrid diffraction technique-general theory and application”, IEEE Trans. Antennas and Propagation AP, 30:5 (1982), 888–897 | DOI

[3] Vasilev E. H., Vozbuzhdenie tel vrascheniya, Radio i svyaz, M., 1987

[4] Borovikov V. A., Kinber B. E., Kryukovskii A. S., Ufimtsev P. Ya., Evristicheskie metody v difraktsii, Kazansk. aviats. in-t, Kazan, 1988

[5] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[6] Eremin Yu. A., Sveshnikov A. G., “Ob effektivnom metode issledovaniya zadach difraktsii na tonkikh tsilindricheskikh ekranakh”, Vestn. MGU. Vychisl. matem. i kibernetika, 1989, no. 3, 39–43 | MR

[7] Samokhin A. B., “Ob ispolzovanii iteratsionnogo metoda dlya resheniya vneshnikh zadach difraktsii”, Difraktsiya elektromagn. voln, MFTI, M., 1987, 31–35

[8] Mazya V. G., “Granichnye integralnye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 27, VINITI, M., 1988, 131–228 | MR

[9] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Dop. k kn.: Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR

[10] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[11] Eremin Yu. A., “K probleme suschestvovaniya nevidimogo rasseivatelya v teorii difraktsii”, Differents. ur-niya, 24:4 (1988), 684–687 | MR | Zbl