The general problem of stability analysis in linear programming
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 164-167
Cet article a éte moissonné depuis la source Math-Net.Ru
The set of all canonical linear programming problems is considered for which a specified vector is a nondegenerate supporting optimal solution, and also the set of all such problems for which perturbations of the linear form coefficients not exceeding a given number leave the optimal solution invariant.
@article{ZVMMF_1990_30_1_a17,
author = {S. M. Shvartin},
title = {The general problem of stability analysis in linear programming},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {164--167},
year = {1990},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a17/}
}
S. M. Shvartin. The general problem of stability analysis in linear programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 164-167. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a17/
[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[2] Ashmanov S. A., Lineinoe programmirovanie, Nauka, M., 1981 | Zbl
[3] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Probl. kibernetiki, 35, Nauka, M., 1979, 169–184 | MR
[4] Kozeratskaya L. N., Lebedeva T. T., Sergienko I. V., “Voprosy ustoichivosti, parametricheskii i postoptimalnyi analiz zadach diskretnoi optimizatsii”, Kibernetika, 1983, no. 4, 71–80 | MR | Zbl
[5] Golshtein E. G., Yudin D. B., Lineinoe programmirovanie, teoriya, metody, prilozheniya, Nauka, M., 1969