An alternative method for the numerical solution of the integrodifferential heat-conduction equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 156-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm is developed using the finite-element method for calculating the temperature field in a bounded domain allowing for the finite rate of propagation of heat during pulsed surface heating. An accumulating finite element mesh is used in order to remove the oscillations in the solution behind the temperature wave front. An investigation of the error in the calculations enables a rational approach to be taken to the choice of parameters in the integration scheme. Calculations of the propagation and reflection of the temperature waves due to pulsed surface charging are presented.
@article{ZVMMF_1990_30_1_a15,
     author = {E. N. Baidakov and G. N. Kuvyrkin},
     title = {An alternative method for the numerical solution of the integrodifferential heat-conduction equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {156--161},
     year = {1990},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a15/}
}
TY  - JOUR
AU  - E. N. Baidakov
AU  - G. N. Kuvyrkin
TI  - An alternative method for the numerical solution of the integrodifferential heat-conduction equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 156
EP  - 161
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a15/
LA  - ru
ID  - ZVMMF_1990_30_1_a15
ER  - 
%0 Journal Article
%A E. N. Baidakov
%A G. N. Kuvyrkin
%T An alternative method for the numerical solution of the integrodifferential heat-conduction equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 156-161
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a15/
%G ru
%F ZVMMF_1990_30_1_a15
E. N. Baidakov; G. N. Kuvyrkin. An alternative method for the numerical solution of the integrodifferential heat-conduction equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 156-161. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a15/

[1] Sotskii E. N., O nekotorykh raznostnykh skhemakh dlya uravneniya teploperenosa giperbolicheskogo tipa, Preprint No 102, IPMatem. AN SSSR, M., 1985, 22 pp. | MR

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[3] Bochkov M. V., Shilnikov E. V., Ob odnom vychislitelnom algoritme dlya giperbolicheskogo uravneniya teploprovodnosti, Preprint No 112, IPMatem. AN SSSR, M., 1986, 15 pp. | MR

[4] Levanov E. N., Sotskii E. N., “Teploperenos s uchetom relaksatsii teplovogo potoka”, Matem. modelirovanie: Nelineinye differents. ur-niya matem. fiz., Nauka, M., 1987, 155–190 | MR

[5] Osokin A. E., Suvorova Yu. V., “Nekotorye zadachi teploprovodnosti dlya nasledstvenno uprugikh materialov”, Mashinovedenie, 1983, no. 1, 87–92

[6] Zarubin V. S., Kuvyrkin G. N., “Ispolzovanie strukturnykh parametrov dlya issledovaniya termonapryazhennogo sostoyaniya deformiruemogo tela pri impulsnom nagreve”, Inzh.-fiz. zhurnal, 54:3 (1988), 468–476 | MR

[7] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[8] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986 | MR

[9] Troschiev V. E., Shagaliev R. M., “Konservativnye uzlovye skhemy metodov konechnykh raznostei i konechnykh elementov dlya dvumernogo uravneniya teploprovodnosti”, Chisl. metody mekhan. sploshnoi sredy, 15, no. 20, ITPM SO AN SSSR, Novosibirsk, 1984, 131–157

[10] Zarubin V. S., Kuvyrkin G. N., Tsitsin A. G., Sharov S. M., “Osobennosti chislennogo resheniya zadach nestatsionarnoi teploprovodnosti dlya sostavnykh tel peremennogo ob'ema”, Matem. modelirovanie v nauke i tekhn., Vses. shkola-seminar, Tezisy dokl., Perm, 1986, 144–145

[11] Kuvyrkin G. N., Nerushai S. A., Tsitsin A. G., Variant metoda konechnykh elementov dlya resheniya zadach nestatsionarnoi teploprovodnosti v sostavnykh telakh, Dep. v VINITI 15.06.87, No 4329-V87

[12] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[13] Kuvyrkin G. N., “Termodinamicheskii vyvod giperbolicheskogo uravneniya teploprovodnosti”, Teplofiz. vysokikh t-r, 25:3 (1987), 468–476