On some difference-characteristic schemes for non-one-dimensional non-stationary problems in the theory of elasticity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 135-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The difference schemes which are obtained by averaging characteristic relationships on simplexes located in the characteristic hyperplanes are considered and investigated in the case of the hyperbolic system of equations which describe the propagation of waves in an elastoplastic medium. A method is proposed for approximating the so-called “geometric terms” in the case of axially symmetric problems.
@article{ZVMMF_1990_30_1_a11,
     author = {L. F. Yukhno},
     title = {On some difference-characteristic schemes for non-one-dimensional non-stationary problems in the theory of elasticity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {135--143},
     year = {1990},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a11/}
}
TY  - JOUR
AU  - L. F. Yukhno
TI  - On some difference-characteristic schemes for non-one-dimensional non-stationary problems in the theory of elasticity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 135
EP  - 143
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a11/
LA  - ru
ID  - ZVMMF_1990_30_1_a11
ER  - 
%0 Journal Article
%A L. F. Yukhno
%T On some difference-characteristic schemes for non-one-dimensional non-stationary problems in the theory of elasticity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 135-143
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a11/
%G ru
%F ZVMMF_1990_30_1_a11
L. F. Yukhno. On some difference-characteristic schemes for non-one-dimensional non-stationary problems in the theory of elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 135-143. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a11/

[1] Kukudzhanov V. N., “Chislennoe reshenie neodnomernykh zadach rasprostraneniya voln napryazhenii v tverdykh telakh”, Soobsch. po prikl. matem., 6, VTs AN SSSR, M., 1976

[2] Uilkins M., French S., Sorem M., “Konechnoraznostnaya skhema dlya resheniya zadach, zavisyaschikh ot trekh prostranstvennykh koordinat i vremeni”, Chisl. metody v mekhan. zhidkostei, Mir, M., 1973, 115–119

[3] Beida Yu., “Dvumernye uprugo-vyazko-plasticheskie volny”, Rasprostranenie uprugikh i uprugo-plastich. voln, Nauka, Alma-Ata, 1973, 77–81

[4] Rakhmatulin X. A., Karimbaev T. D., Baiteliev T., “Primenenie metoda prostranstvennykh kharakteristik k resheniyu zadach po rasprostraneniyu uprugo-plasticheskikh voln”, Izv. AN KazSSR. Ser. fiz.-matem. nauk, 1973, no. 1, 59–66 | Zbl

[5] Kukudzhanov V. I., Kondaurov V. I., “Chislennoe reshenie neodnomernykh zadach dinamiki tverdogo deformiruemogo tela”, Probl. dinamiki uprugo-plastich. sred. Mekhanika, Mir, M., 1975, 63–118

[6] Vedenyapin E. N., Kukudzhanov V. N., “Metod chislennogo integrirovaniya nestatsionarnykh zadach dinamiki uprugoi sredy”, Zh. vychisl. matem. i matem. fiz., 21:5 (1981), 1233–1248 | MR | Zbl

[7] Bulychev G. G., Pshenichnov S. G., “Dinamika dvukhsloinogo lineino-uprugogo tsilindra pri razryvnoi nagruzke”, Stroit. mekhan. i raschet sooruzhenii, 1986, no. 6, 54–58