The features of gradient methods for distributed optimal-control problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A wide class of nonlinear distributed control systems is distinguished for which the Frechet differentiability in spaces of the type $L_\infty$ of functionals of fairly general form is proved for arbitrary orders of increase of the “right-hand sides” with respect to the “phase” and controlling variables. Formulas are obtained for the corresponding Frechet derivatives, which can be effectively used when validating methods of descent of the gradient type in optimal-control problems with a limited set of permissible values of the control. Central to this is the theorem of the sufficient conditions of stability (with respect to perturbation of the control) of the existence of global solutions of systems of the distinguished class. Specific examples are given.
@article{ZVMMF_1990_30_1_a1,
     author = {V. I. Sumin},
     title = {The features of gradient methods for distributed optimal-control problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--21},
     year = {1990},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a1/}
}
TY  - JOUR
AU  - V. I. Sumin
TI  - The features of gradient methods for distributed optimal-control problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 3
EP  - 21
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a1/
LA  - ru
ID  - ZVMMF_1990_30_1_a1
ER  - 
%0 Journal Article
%A V. I. Sumin
%T The features of gradient methods for distributed optimal-control problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 3-21
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a1/
%G ru
%F ZVMMF_1990_30_1_a1
V. I. Sumin. The features of gradient methods for distributed optimal-control problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_1_a1/

[1] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[2] Tikhonov A. N., “O funktsionalnykh uravneniyakh tipa Volterra i ikh primeneniyakh k nekotorym zadacham matematicheskoi fiziki”, Byul. MGU. Sekts. A, 1:8 (1938), 1–49 | MR

[3] Sumin V. I., Optimizatsiya upravlyaemykh obobschennykh volterrovykh sistem, Avtoref. dis. ...kand. fiz.-matem. nauk, GGU, Gorkii, 1975

[4] Plotnikov V. I., Sumin V. I., “Optimizatsiya raspredelennykh sistem v lebegovom prostranstve”, Sibirskii matem. zh., 22:6 (1981), 142–161 | MR | Zbl

[5] Morozov S. F., Sumin V. I., “Nelineinoe integro-differentsialnoe uravnenie nestatsionarnogo perenosa”, Matem. zametki, 21:5 (1977), 665–676 | MR | Zbl

[6] Morozov S. F., Sumin V. I., “Nelineinye integro-differentsialnye sistemy uravnenii nestatsionarnogo perenosa”, Sibirskii matem. zh., 19:4 (1978), 842–848 | MR | Zbl

[7] Morozov S. F., Sumin V. I., “Optimizatsiya nelineinykh sistem teorii perenosa”, Zh. vychisl. matem. i matem. fiz., 19:1 (1979), 99–111 | MR | Zbl

[8] Sumin V. I., “Ob ustoichivosti suschestvovaniya globalnogo resheniya pervoi kraevoi zadachi dlya upravlyaemogo parabolicheskogo uravneniya”, Differents. ur-niya, 22:9 (1986), 1587–1595 | MR

[9] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[10] Plotnikov V. I., Sumin V. I., “Problemy ustoichivosti nelineinykh sistem Gypca-Darbu”, Differents. ur-niya, 8:5 (1972), 845–856 | MR | Zbl

[11] Matveev A. S., Yakubovich V. A., “Optimalnoe upravlenie nekotorymi raspredelennymi sistemami”, Sibirskii matem. zh., 19:5 (1978), 1109–1140 | MR | Zbl

[12] Donchev A., Sistemy optimalnogo upravleniya. Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987 | MR | Zbl

[13] Sumin M. I., “Optimalnoe upravlenie sistemami s priblizhenno izvestnymi iskhodnymi dannymi”, Zh. vychisl. matem. i matem. fiz., 27:2 (1987), 163–177 | MR | Zbl

[14] Sirazetdinov T. K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977 | MR

[15] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[16] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[19] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[20] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[21] Plotnikov V. I., Sumin V. I., “Optimizatsiya ob'ektov s raspredelennymi parametrami, opisyvaemykh sistemami Gursa-Darbu”, Zh. vychisl. matem. i matem. fiz., 12:1 (1972), 61–77 | MR | Zbl