The multigrid method applied to a finite-element scheme for a two-dimensional Stokes-type system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 12, pp. 1797-1803 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional system of the Stokes type, in which the coefficient of the highest order derivatives is a small parameter $\varepsilon>0$, is considered, and a version of the multigrid method is developed to handle a finite-element scheme for the system, obtained by using biquadratic elements for the velocities, linear elements for the pressure and an approximatively-solenoidal basis. Approximatively-solenoidal interpolations are defined and used to design the coarse-grid bases. Numerical experiments demonstrate a high rate of convergence even for very small $\varepsilon$ values.
@article{ZVMMF_1990_30_12_a4,
     author = {B. V. Pal'tsev and I. I. Chechel'},
     title = {The multigrid method applied to a~finite-element scheme for a~two-dimensional {Stokes-type} system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1797--1803},
     year = {1990},
     volume = {30},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a4/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
AU  - I. I. Chechel'
TI  - The multigrid method applied to a finite-element scheme for a two-dimensional Stokes-type system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1797
EP  - 1803
VL  - 30
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a4/
LA  - ru
ID  - ZVMMF_1990_30_12_a4
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%A I. I. Chechel'
%T The multigrid method applied to a finite-element scheme for a two-dimensional Stokes-type system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1797-1803
%V 30
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a4/
%G ru
%F ZVMMF_1990_30_12_a4
B. V. Pal'tsev; I. I. Chechel'. The multigrid method applied to a finite-element scheme for a two-dimensional Stokes-type system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 12, pp. 1797-1803. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a4/

[1] Griffiths D. F., “An approximately divergence-free 9-node velocity element (with variations) for incompressible flows”, Intern. J. Numer. Meth. in Fluids, 1:4 (1981), 324–364 | MR

[2] Temam R., Uravneniya Nave-Stoksa, Mir, M., 1981 | MR | Zbl

[3] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh skhem ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[4] Fedorenko P. P., “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 559–564 | MR | Zbl

[5] Astrakhantsev G. P., “Ob odnom iteratsionnom metode resheniya setochnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 11:2 (1971), 439–448 | Zbl

[6] McCormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR | Zbl

[7] W. Hackbusch (ed.), Multigrid methods, Lect. Notes in Math., 960, Springer, N. Y. etc., 1982 | MR | Zbl

[8] W. Hackbusch, U. Trottenberg (eds.), Multigrid methods, v. II, Lect. Notes in Math., 1228, Springer, Berlin, 1986 | MR | Zbl