Some asymptotic formulae for cylindrical Bessel functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 12, pp. 1775-1784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic formulae, convenient for numerical work, are derived for cylindrical Bessel functions of the first, second and third kinds, for modified Bessel functions of the first and second kinds of complex argument and real order, and for their derivatives. These formulae are valid when both argument and order go to infinity simultaneously, subject to a certain law of growth. The formulae may be used to compute the zeros of all the Bessel functions and their derivatives.
@article{ZVMMF_1990_30_12_a2,
     author = {M. K. Kerimov and S. L. Skorokhodov},
     title = {Some asymptotic formulae for cylindrical {Bessel} functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1775--1784},
     year = {1990},
     volume = {30},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a2/}
}
TY  - JOUR
AU  - M. K. Kerimov
AU  - S. L. Skorokhodov
TI  - Some asymptotic formulae for cylindrical Bessel functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1775
EP  - 1784
VL  - 30
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a2/
LA  - ru
ID  - ZVMMF_1990_30_12_a2
ER  - 
%0 Journal Article
%A M. K. Kerimov
%A S. L. Skorokhodov
%T Some asymptotic formulae for cylindrical Bessel functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1775-1784
%V 30
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a2/
%G ru
%F ZVMMF_1990_30_12_a2
M. K. Kerimov; S. L. Skorokhodov. Some asymptotic formulae for cylindrical Bessel functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 12, pp. 1775-1784. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a2/

[1] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Nat. Bur. Standards. Appl. Math. Ser., 55, U. S. Government Printing Office, Washington, D.C., 1964 ; Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR | MR

[2] Watson G. N., A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1962 ; Vatson G. N., Teoriya besselevykh funktsii, Perev. s angl. Bermana V. S., v. I, II, Izd-vo inostr. lit., M., 1949 | MR

[3] Olver F. W. J., Asymptotics and special functions, Academic Press, N. Y., 1974 ; Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Perev. s angl. Brychkova Yu. A., v. 1, Nauka, M., 1978 | MR | MR

[4] Petiau G., La théorie des fonctions de Bessel, exposée en vue de ses applications à la physique mathématique, Centre Nat. Rech. Scient., Paris, 1955 | MR | Zbl

[5] Kuzmin P. O., Bessslevy funktsii, 2-e izd., ONTI, M.–L., 1935

[6] Kratzer A., Franz W., Transzendente Funktionen, Akad. Verl., Leipzig, 1960 ; Krattser A., Frants V., Transtsendentnye funktsii, Perev. s nem. Vilenkina N. Ya., Izd-vo inostr. lit-ry, M., 1963 | MR | Zbl

[7] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 2, McGraw-Hill Book Co., Inc., N. Y., 1953; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Perev. s angl. Vilenkina N. Ya., Nauka, M., 1966 | MR

[8] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Springer, N. Y., 1966 | MR

[9] Olver F. W. J., “Tables for Bessel functions of moderate and large orders”, Math. Tables Nat. Phys. Lab., v. 6, Her Majesty's Stat. Office, London, 1962 | MR | Zbl

[10] Kerimov M. K., Skorokhodov S. L., “Vychislenie kompleksnykh nulei modifitsirovannoi funktsii Besselya II roda i ee proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1150–1163 | MR | Zbl

[11] Kerimov M. K., Skorokhodov S. L., “O vychislenii kompleksnykh nulei funktsii Besselya $J_\nu(z)$ i $Y_\nu(z)$ i ikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 24:10 (1984), 1497–1513 | MR | Zbl

[12] Kerimov M. K., Skorokhodov S. L., “O vychislenii kratnykh nulei proizvodnykh tsilindricheskikh funktsii Besselya $J_\nu(z)$ i $Y_\nu(z)$”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1749–1760 | MR | Zbl

[13] Kerimov M. K., Skorokhodov S. L., “O vychislenii kratnykh kompleksnykh nulei proizvodnykh tsilindricheskikh funktsii Besselya”, Zh. vychisl. matem. i matem. fiz., 27:11 (1987), 1628–1639 | MR

[14] Skorokhodov S. L., Algoritmy vychisleniya tsilindricheskikh funktsii Besselya i ikh nulei v kompleksnoi oblasti, Dis. ...kand. fiz.-matem. nauk, VTs AN SSSR, M., 1984, 133 pp.

[15] Hankel H., “Die Zylinderfunktionen erster und zweiter Art”, Math. Ann., 1 (1869), 467–501 | DOI | MR

[16] Debye P., “Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments und unbeschränkt veränderliche Werte des Index”, Math. Ann., 67 (1909), 535–558 | DOI | MR

[17] Debye P., “Semikonvergente Entwicklungen für die Zylinderfunktionen und ihre Ausdehnung ins Komplexe”, Sitzungsberichte Bayer. Akad. Wiss., Math-Naturwiss. Kl., 40, no. 5, München, 1910, 1–29

[18] Meijer C. S., “Asymptotische Entwicklungen von Besselschen und Hankelschen Funktionen für grosse Werte des Arguments und der Ordnung”, Math. Ann., 108 (1933), 321–359 | DOI | MR

[19] Veen S. C. van, “Asymptotische Entwicklung der Besselschen Funktionen bei grossem Parameter und grossem Argument”, Math. Ann., 97 (1927), 696–710 | DOI | MR | Zbl

[20] Nicholson J. W., “The asymptotic expansions of Bessel functions of high order”, Philos. Mag., Ser. 6, 14 (1907), 697–707 | DOI

[21] Petrashen G. I., Smirnova N. S., Makarov G. I., “Ob asimptoticheskikh predstavleniyakh tsilindricheskikh funktsii”, Uch. zap. LGU. Ser. matem. nauk, 170, no. 27, 1953, 7–95 ; Сер. матем. наук, 246, No 32 (1958), 347–352 | MR

[22] Fulks W., “Debye's series in the transitional region”, Math. Z., 88:4 (1965), 368–374 | DOI | MR | Zbl

[23] Langer R. E., “On the asymptotic solutions of differential equations, whith an application to the Bessel functions of large complex order”, Trans. Amer. Math. Soc., 34:3 (1932), 447–480 | DOI | MR

[24] Langer R. E., “On the asymptotic solutions of ordinary differential equations, whith an application to the Bessel functions of large order”, Trans. Amer. Math. Soc., 33 (1931), 23–64 | DOI | MR

[25] Cherry T. M., “Uniform asymptotic formulae for functions with transition points”, Trans. Amer. Math. Soc., 68 (1950), 224–257 | DOI | MR | Zbl

[26] Fok V. A., “Novoe asimptoticheskoe vyrazhenie dlya besselevykh funktsii”, Dokl. AN SSSR, 1:3 (1934), 97–102

[27] Svetlov A. V., “Ob asimptoticheskom vyrazhenii dlya besselevykh funktsii bolshogo poryadka”, Dokl. AN SSSR, 2:8 (1934), 445–448

[28] Schöbe W., “Eine an die Nicholsonformel anschlissende asymptotische Entwicklung für Zylinderfunktionen”, Acta Math., 92 (1954), 265–307 | DOI | MR

[29] Lense J., “Über die asymptotische Entwicklung der Hankelschen Funktionen für grosse positive Werte der Veränderlichen und des Zeigers”, Z. angew. Math. und Mech., 34:1–2 (1954), 44–53 | DOI | MR | Zbl

[30] Emde F., “Passintegrale für Zylinderfunktionen von komplexem Index”, Z. angew. Math. und Mech., 19 (1939), 101–118 | DOI

[31] Franz W., “Zur Asymptotik der Zylinderfunktionen und ihrer Nullstellen”, Z. angew. Math. und Mech., 40:9 (1960), 385–396 | DOI | MR

[32] Beckmann F., Franz W., “Asymptotisches Verhalten der Zylinderfunktionen in Abhängigkeit vom komplexem Index”, Z. angew. Math. und Mech., 37:1–2 (1957), 17–27 | DOI | MR | Zbl

[33] Döring B., “Über Fehlerschranken zu den Hankelschen asymptotischen Entwicklungen der Besselfunktionen für komplexes Argument und reelen Index”, Z. angew. Math. und Mech., 42:1–2 (1962), 62–76 | DOI | MR

[34] Nagase M., “Asymptotic expansions of Bessel functions in the transitional regions”, J. Phys. Soc. Japan, 9:2 (1954), 296–297 | DOI | MR

[35] Kausel E., “Convergence problems in the asymptotics expansions for the Bessel functions of complex argument”, Internat. J. Numer. Meth. Engng., 10:6 (1976), 1404–1406 | DOI | MR | Zbl

[36] Fröman P. O., Karlsson F., Yngve S., “Phase integral formulas for Bessel functions and their relation to already existing asymptotic formulas”, J. Math. Phys., 27:11 (1986), 2732–2747 | DOI | MR

[37] Makarov G. I., Osipov A. V., “Ob asimptoticheskikh predstavleniyakh Debaya dlya tsilindricheskikh funktsii”, Vestn. LGU, 1987, no. 2, 47–52 | MR

[38] Temme N. M., “On the numerical evaluation of the modified Bessel function of the third kind”, J. Comput. Phys., 19:3 (1975), 324–337 | DOI | MR | Zbl

[39] Gautschi W., “Computational aspects of three-term recurrence relations”, SIAM Rev., 1:1 (1967), 24–82 | DOI | MR

[40] Stadje W., “Probabilistic proofs of some formulas for Bessel functions”, Proc. Koninkl. Nederl. Akad. Wet. A, 86:3 (1983), 343–359 | MR