Finite splitting algorithm for the $J$-symmetric generalized eigenvalue problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 12, pp. 1765-1774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of matrix pencils associated with the numerical solution of matrix Riccati equations are considered. In particular, a new notion is defined – $J$-symmetric matrix pencils – and a finite orthogonal and symplectic algorithm is proposed for such pencils, halving the order of the generalized eigenvalue problem.
@article{ZVMMF_1990_30_12_a1,
     author = {M. S. Sagitov},
     title = {Finite splitting algorithm for the $J$-symmetric generalized eigenvalue problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1765--1774},
     year = {1990},
     volume = {30},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a1/}
}
TY  - JOUR
AU  - M. S. Sagitov
TI  - Finite splitting algorithm for the $J$-symmetric generalized eigenvalue problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1765
EP  - 1774
VL  - 30
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a1/
LA  - ru
ID  - ZVMMF_1990_30_12_a1
ER  - 
%0 Journal Article
%A M. S. Sagitov
%T Finite splitting algorithm for the $J$-symmetric generalized eigenvalue problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1765-1774
%V 30
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a1/
%G ru
%F ZVMMF_1990_30_12_a1
M. S. Sagitov. Finite splitting algorithm for the $J$-symmetric generalized eigenvalue problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 12, pp. 1765-1774. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_12_a1/

[1] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1970

[2] Laub A. J., “A Schur method for solving algebraic Riccati equations”, IEEE Trans. Automat. Control AC, 24 (1979), 913–921 | DOI | MR | Zbl

[3] Gardiner J. D., Laub A. J., “A generalization of the matrix-sign-function solution for algebraic Riccati equations”, Internat. J. Control, 44:3 (1986), 823–832 | DOI | Zbl

[4] Laub A. J., “Algebraic aspects of generalized eigenvalue problems for solving Riccati equations”, Comput. and Combinatorial Methods in Systems Theory, v. V, Elsevier Science Publ., North-Holland, 1986, 213–227 | MR

[5] Ikramov X. D., “Chislennoe reshenie matrichnykh uravnenii i simplekticheskaya matrichnaya algebra”, Vychisl. protsessy i sistemy, 5, Nauka, M., 1987, 154–163 | MR