Methods of splitting by subdomains for the neutron transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1702-1718 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of methods of iterations in subdomains, intended for solving boundary-value problems in neutron transport theory is analysed. These methods are generated by certain schemes for splitting positive operators in Banach spaces with a cone. The comparative characteristics of such methods are studied and the most efficient ones are indicated.
@article{ZVMMF_1990_30_11_a8,
     author = {B. D. Abramov and S. B. Shikhov},
     title = {Methods of splitting by subdomains for the neutron transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1702--1718},
     year = {1990},
     volume = {30},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a8/}
}
TY  - JOUR
AU  - B. D. Abramov
AU  - S. B. Shikhov
TI  - Methods of splitting by subdomains for the neutron transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1702
EP  - 1718
VL  - 30
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a8/
LA  - ru
ID  - ZVMMF_1990_30_11_a8
ER  - 
%0 Journal Article
%A B. D. Abramov
%A S. B. Shikhov
%T Methods of splitting by subdomains for the neutron transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1702-1718
%V 30
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a8/
%G ru
%F ZVMMF_1990_30_11_a8
B. D. Abramov; S. B. Shikhov. Methods of splitting by subdomains for the neutron transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1702-1718. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a8/

[1] Smelov V. V., “Printsip iterirovaniya po podoblastyam v zadachakh s uravneniem perenosa”, Zh. vychisl. matem. i matem. fiz., 21:6 (1981), 1493–1504 | MR | Zbl

[2] Lebedev V. I., Agoshkov V. I., Obobschennyi algoritm Shvartsa s peremennymi parametrami, Preprint No 19, OVM AN SSSR, M., 1981 | MR

[3] Abramov B. D., Shikhov S. B., O metode razdeleniya oblastei v teorii perenosa neitronov, Preprint FEI-1630, Obninsk, 1984

[4] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[5] Agoshkov V. I., Obobschennye resheniya uravneniya perenosa i svoistva ikh gladkosti, Nauka, M., 1988 | MR

[6] Shikhov S. B., Matematicheskie zadachi teorii reaktorov, Atomizdat, M., 1973

[7] Vladimirov V. S., Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. Matem. in-ta AN SSSR, 61, M., 1961

[8] Germogenova T. A., “Obobschennye resheniya uravneniya perenosa”, Zh. vychisl. matem. i matem. fiz., 9:3 (1969), 605–625 | MR | Zbl

[9] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstve summiruemykh funktsii, Nauka, M., 1968

[10] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR | Zbl

[11] Krasnoselskii M. A., Lifshits E. A., Sobolev A. V., Pozitivnye lineinye sistemy, Nauka, M., 1985 | MR