Approximation of bounded solutions and exponential dichotomy on the axis
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1646-1660

Voir la notice de l'article provenant de la source Math-Net.Ru

Lyapunov transformations possessing certain properties are used to construct regular two-point boundary-value problems as approximations to the problem of determining a bounded solution in the general case. The concept of "limiting solutions as $t\to\infty$" is defined and the behaviour of solutions of linear ordinary differential equations as $t\to\infty$ is investigated. The necessary and sufficient conditions are derived under which a singular boundary-value problem with conditions assigned at infinity is uniquely solvable, and an appropriate approximating problem is constructed.
@article{ZVMMF_1990_30_11_a4,
     author = {D. S. Dzhumabaev},
     title = {Approximation of bounded solutions and exponential dichotomy on the axis},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1646--1660},
     publisher = {mathdoc},
     volume = {30},
     number = {11},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a4/}
}
TY  - JOUR
AU  - D. S. Dzhumabaev
TI  - Approximation of bounded solutions and exponential dichotomy on the axis
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1646
EP  - 1660
VL  - 30
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a4/
LA  - ru
ID  - ZVMMF_1990_30_11_a4
ER  - 
%0 Journal Article
%A D. S. Dzhumabaev
%T Approximation of bounded solutions and exponential dichotomy on the axis
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1646-1660
%V 30
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a4/
%G ru
%F ZVMMF_1990_30_11_a4
D. S. Dzhumabaev. Approximation of bounded solutions and exponential dichotomy on the axis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1646-1660. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a4/