Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized Taylor and Laurent series
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1728-1740
Voir la notice de l'article provenant de la source Math-Net.Ru
The two-dimensional gravitational-gyroscopic wave equation is considered. Methods analogous to those of the theory of functions of a complex variable are used to develop expansions similar to Taylor and Laurent series for the functions in question. These expansions are used to investigate the Dirichlet problem for a half-plane.
@article{ZVMMF_1990_30_11_a10,
author = {Yu. D. Pletner},
title = {Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized {Taylor} and {Laurent} series},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1728--1740},
publisher = {mathdoc},
volume = {30},
number = {11},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a10/}
}
TY - JOUR AU - Yu. D. Pletner TI - Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized Taylor and Laurent series JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 1728 EP - 1740 VL - 30 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a10/ LA - ru ID - ZVMMF_1990_30_11_a10 ER -
%0 Journal Article %A Yu. D. Pletner %T Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized Taylor and Laurent series %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1990 %P 1728-1740 %V 30 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a10/ %G ru %F ZVMMF_1990_30_11_a10
Yu. D. Pletner. Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized Taylor and Laurent series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1728-1740. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a10/