Stability bounds for solutions of some conditionally well-posed problems on a set containing discontinuous functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1603-1613
Voir la notice de l'article provenant de la source Math-Net.Ru
Stability bounds for the solutions of conditionally well-posed problems for the case when the variation and the maximum absolute value of the solutions are bounded by known constants are derived. Differentiation problems, Volterra and Abel integral equations, and convolution equations are considered.
@article{ZVMMF_1990_30_11_a0,
author = {S. L. Logunov},
title = {Stability bounds for solutions of some conditionally well-posed problems on a~set containing discontinuous functions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1603--1613},
publisher = {mathdoc},
volume = {30},
number = {11},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a0/}
}
TY - JOUR AU - S. L. Logunov TI - Stability bounds for solutions of some conditionally well-posed problems on a set containing discontinuous functions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1990 SP - 1603 EP - 1613 VL - 30 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a0/ LA - ru ID - ZVMMF_1990_30_11_a0 ER -
%0 Journal Article %A S. L. Logunov %T Stability bounds for solutions of some conditionally well-posed problems on a set containing discontinuous functions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1990 %P 1603-1613 %V 30 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a0/ %G ru %F ZVMMF_1990_30_11_a0
S. L. Logunov. Stability bounds for solutions of some conditionally well-posed problems on a set containing discontinuous functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 11, pp. 1603-1613. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_11_a0/