A modified method of approximate factorization when calculating three-dimensional potential flows in channels
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 10, pp. 1553-1570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1990_30_10_a9,
     author = {V. V. Koretskii and D. A. Lyubimov},
     title = {A~modified method of approximate factorization when calculating three-dimensional potential flows in channels},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1553--1570},
     year = {1990},
     volume = {30},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a9/}
}
TY  - JOUR
AU  - V. V. Koretskii
AU  - D. A. Lyubimov
TI  - A modified method of approximate factorization when calculating three-dimensional potential flows in channels
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1553
EP  - 1570
VL  - 30
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a9/
LA  - ru
ID  - ZVMMF_1990_30_10_a9
ER  - 
%0 Journal Article
%A V. V. Koretskii
%A D. A. Lyubimov
%T A modified method of approximate factorization when calculating three-dimensional potential flows in channels
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1553-1570
%V 30
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a9/
%G ru
%F ZVMMF_1990_30_10_a9
V. V. Koretskii; D. A. Lyubimov. A modified method of approximate factorization when calculating three-dimensional potential flows in channels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 10, pp. 1553-1570. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a9/

[1] Balhaus W. F., Jameson A., Albert J., “Implicit approximate-factorization scheme for steady transonic flow problems”, AIAA Journal, 16:6 (1978), 573–579 | DOI

[2] Holst T. L., “An implicit algorithm for the conservative full potential equation using an arbitrary mesh”, AIAA Journal, 17:10 (1979), 1038–1045 | DOI | Zbl

[3] Holst T. L., “Fast conservation algorithm for solving the transonic full potential equation”, AIAA Journal, 18:12 (1980), 1431–1439 | DOI | Zbl

[4] Ivanov M. Ya., Koretskii V. V., “Raschet techenii v dvumernykh i prostranstvennykh soplakh metodom priblizhennoi faktorizatsii”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1365–1381 | MR

[5] Flores J., Holst T. L., Kwak D., Batiste D., “A new consistent spatial differencing scheme for the transonic full potential equation”, AIAA Journal, 22:8 (1984), 1027–1034 | DOI | MR | Zbl

[6] Jiang H., Cai R., An accurate spatial differencing scheme with suitability to curvilinear grids for 3-D full potential flow computation, AIAA Paper, 1985

[7] Forester C. K., Body-fitted 3-D full potential flow analysis of complex ducts and inlets, AIAA Paper No. 81-02, 1981

[8] Kwak D., An implicit full-potential code for cascade flow on H-grid topology, AIAA Paper No. 83-506, 1983

[9] Cuffel R. F., Back L. H., Massier P. F., “Transonic flowfield in a supersonic nozzle with small throat radius of curvature”, AIAA Journal, 7:7 (1969), 1364–1366 | DOI