A method of increasing the stability of an implicit upwind scheme with three-point scalar pivotal condensations for Euler's equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 10, pp. 1596-1599 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1990_30_10_a13,
     author = {V. E. Kozlov},
     title = {A~method of increasing the stability of an implicit upwind scheme with three-point scalar pivotal condensations for {Euler's} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1596--1599},
     year = {1990},
     volume = {30},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a13/}
}
TY  - JOUR
AU  - V. E. Kozlov
TI  - A method of increasing the stability of an implicit upwind scheme with three-point scalar pivotal condensations for Euler's equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1990
SP  - 1596
EP  - 1599
VL  - 30
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a13/
LA  - ru
ID  - ZVMMF_1990_30_10_a13
ER  - 
%0 Journal Article
%A V. E. Kozlov
%T A method of increasing the stability of an implicit upwind scheme with three-point scalar pivotal condensations for Euler's equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1990
%P 1596-1599
%V 30
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a13/
%G ru
%F ZVMMF_1990_30_10_a13
V. E. Kozlov. A method of increasing the stability of an implicit upwind scheme with three-point scalar pivotal condensations for Euler's equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 30 (1990) no. 10, pp. 1596-1599. http://geodesic.mathdoc.fr/item/ZVMMF_1990_30_10_a13/

[1] Pulliam T. H., Chaussee D. S., “An diagonal form of an implicit approximate factorization algorithm”, J. Comput. Phys., 39 (1981), 347–363 | DOI | MR | Zbl

[2] Coakley T. J., “Implicit upwind methods for the compressible Navier-Stokes equations”, AIAA Journal, 23:3 (1985), 374–380 | DOI | Zbl

[3] Obayashi S., Matsushima K., Fujii K., Improvements in efficiency and reliability for Navier–Stokes computations using the LU-ADI factorization algorithm, AIAA Paper No. 338, 1986

[4] Ivanov M. Ya., Nigmatullin P. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya chislennogo integrirovaniya uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 27:11 (1987), 1725–1735 | MR | Zbl

[5] Ivanov M. Ya., Krupa V. G., Nigmatullin R. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave–Stoksa”, Zh. vychisl matem. i matem. fiz., 29:6 (1989), 888–901 | MR | Zbl

[6] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[7] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl