Conditions for global non-existence and localizations of solutions of the Cauchy problem for a class of non-linear parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 6, pp. 1341-1354
Voir la notice de l'article provenant de la source Math-Net.Ru
The sufficient conditions are found for the unsolvability or global solvability of the Cauchy problem for a class of quasilinear parabolic equations. Conditions are also obtained for localization (“in the large” or “in the small”) of solutions of the problem, and for the absence of localization in the large.
@article{ZVMMF_1983_23_6_a5,
author = {V. A. Galaktionov},
title = {Conditions for global non-existence and localizations of solutions of the {Cauchy} problem for a class of non-linear parabolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1341--1354},
publisher = {mathdoc},
volume = {23},
number = {6},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a5/}
}
TY - JOUR AU - V. A. Galaktionov TI - Conditions for global non-existence and localizations of solutions of the Cauchy problem for a class of non-linear parabolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 1341 EP - 1354 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a5/ LA - ru ID - ZVMMF_1983_23_6_a5 ER -
%0 Journal Article %A V. A. Galaktionov %T Conditions for global non-existence and localizations of solutions of the Cauchy problem for a class of non-linear parabolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 1341-1354 %V 23 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a5/ %G ru %F ZVMMF_1983_23_6_a5
V. A. Galaktionov. Conditions for global non-existence and localizations of solutions of the Cauchy problem for a class of non-linear parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 6, pp. 1341-1354. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a5/