The critical level of discrepancy in regularization methods
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 6, pp. 1283-1297
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A class of methods of solving linear ill-posed problems in Hilbert space is studied. The regularization parameter is chosen from the condition for the norm of the discrepancy to be equal to the level of accuracy in specifying the right-hand side of the equation. This choice of regularization parameter leads in certain cases to a convergent order-wise optimal process, and in others to a divergent process. The case of an approximately specified operator is also considered.
            
            
            
          
        
      @article{ZVMMF_1983_23_6_a0,
     author = {G. M. Vainikko},
     title = {The critical level of discrepancy in regularization methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1283--1297},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a0/}
}
                      
                      
                    TY - JOUR AU - G. M. Vainikko TI - The critical level of discrepancy in regularization methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 1283 EP - 1297 VL - 23 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a0/ LA - ru ID - ZVMMF_1983_23_6_a0 ER -
G. M. Vainikko. The critical level of discrepancy in regularization methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 6, pp. 1283-1297. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_6_a0/