Mathematical modelling of non-stationary processes in plasma-optical systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 5, pp. 1141-1157
Voir la notice de l'article provenant de la source Math-Net.Ru
A hybrid mathematical model is proposed for describing the non-stationary processes in plasma-optical systems, in which the dynamic behaviour of the heavy components of the plasma medium (the ions and neutral atoms) is described by kinetic equations taking account of ionization processes, while the dynamic behaviour of the electronic component is described at the hydrodynamic level. To solve the resulting system of integro-differential equations, a conservative numerical algorithm is proposed, based on the conservative version of the “coarse particles” method.
@article{ZVMMF_1983_23_5_a10,
author = {A. G. Sveshnikov and S. A. Yakunin},
title = {Mathematical modelling of non-stationary processes in plasma-optical systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1141--1157},
publisher = {mathdoc},
volume = {23},
number = {5},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_5_a10/}
}
TY - JOUR AU - A. G. Sveshnikov AU - S. A. Yakunin TI - Mathematical modelling of non-stationary processes in plasma-optical systems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 1141 EP - 1157 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_5_a10/ LA - ru ID - ZVMMF_1983_23_5_a10 ER -
%0 Journal Article %A A. G. Sveshnikov %A S. A. Yakunin %T Mathematical modelling of non-stationary processes in plasma-optical systems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 1141-1157 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_5_a10/ %G ru %F ZVMMF_1983_23_5_a10
A. G. Sveshnikov; S. A. Yakunin. Mathematical modelling of non-stationary processes in plasma-optical systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 5, pp. 1141-1157. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_5_a10/