A second-order monotone difference scheme for hyperbolic systems with two independent variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 848-859

Voir la notice de l'article provenant de la source Math-Net.Ru

Considering the example of the equations of one-dimensional non-stationary gas dynamics, a modification of Godunov's well-know scheme is proposed for hyperbolic systems with two independent variables; the modification, while preserving the monotonicity, raises to second order the approximation of the differential operator and reduces smearing of contact discontinuities and low-intensity jumps.
@article{ZVMMF_1983_23_4_a7,
     author = {V. I. Kopchenov and A. N. Kraiko},
     title = {A second-order monotone difference scheme for hyperbolic systems with two independent variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {848--859},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/}
}
TY  - JOUR
AU  - V. I. Kopchenov
AU  - A. N. Kraiko
TI  - A second-order monotone difference scheme for hyperbolic systems with two independent variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1983
SP  - 848
EP  - 859
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/
LA  - ru
ID  - ZVMMF_1983_23_4_a7
ER  - 
%0 Journal Article
%A V. I. Kopchenov
%A A. N. Kraiko
%T A second-order monotone difference scheme for hyperbolic systems with two independent variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1983
%P 848-859
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/
%G ru
%F ZVMMF_1983_23_4_a7
V. I. Kopchenov; A. N. Kraiko. A second-order monotone difference scheme for hyperbolic systems with two independent variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 848-859. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/