A second-order monotone difference scheme for hyperbolic systems with two independent variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 848-859
Voir la notice de l'article provenant de la source Math-Net.Ru
Considering the example of the equations of one-dimensional non-stationary gas dynamics, a modification of Godunov's well-know scheme is proposed for hyperbolic systems with two independent variables; the modification, while preserving the monotonicity, raises to second order the approximation of the differential operator and reduces smearing of contact discontinuities and low-intensity jumps.
@article{ZVMMF_1983_23_4_a7,
author = {V. I. Kopchenov and A. N. Kraiko},
title = {A second-order monotone difference scheme for hyperbolic systems with two independent variables},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {848--859},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/}
}
TY - JOUR AU - V. I. Kopchenov AU - A. N. Kraiko TI - A second-order monotone difference scheme for hyperbolic systems with two independent variables JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1983 SP - 848 EP - 859 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/ LA - ru ID - ZVMMF_1983_23_4_a7 ER -
%0 Journal Article %A V. I. Kopchenov %A A. N. Kraiko %T A second-order monotone difference scheme for hyperbolic systems with two independent variables %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1983 %P 848-859 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/ %G ru %F ZVMMF_1983_23_4_a7
V. I. Kopchenov; A. N. Kraiko. A second-order monotone difference scheme for hyperbolic systems with two independent variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 23 (1983) no. 4, pp. 848-859. http://geodesic.mathdoc.fr/item/ZVMMF_1983_23_4_a7/